Skip to main content

Brain Tumor Segmentation Using a 3D FCN with Multi-scale Loss

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10670))

Included in the following conference series:

Abstract

In this work, we use a 3D Fully Connected Network (FCN) architecture for brain tumor segmentation. Our method includes a multi-scale loss function on predictions given at each resolution of the FCN. Using this approach, the higher resolution features can be combined with the initial segmentation at a lower resolution so that the FCN models context in both the image and label domains. The model is trained using a multi-scale loss function and a curriculum on sample weights is employed to address class imbalance. We achieved competitive results during the testing phase of the BraTS 2017 Challenge for segmentation with Dice scores of 0.710, 0.860, and 0.783 for enhancing tumor, whole tumor, and tumor core, respectively.

This work was supported by a Canadian Natural Science and Engineering Research Council Collaborative Research and Development Grant (CRDPJ 505357-16) and Synaptive Medical. We gratefully acknowledge the support of NVIDIA Corporation for the donation of the Titan X Pascal GPU used for this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakas, S., Akbari, H., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q (2017)

  2. Bakas, S., Akbari, H., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF (2017)

  3. Bakas, S., Akbari, H., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  4. Havaei, M., Davy, A., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  5. Jesson, A., Guizard, N., Ghalehjegh, S.H., Goblot, D., Soudan, F., Chapados, N.: CASED: curriculum adaptive sampling for extreme data imbalance. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 639–646. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_73

    Chapter  Google Scholar 

  6. Kamnitsas, K., Ledig, C., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  7. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Long, J., Shelhamer, E., et al.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  9. Menze, B.H., Jakab, A., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). Trans. MI 34(10), 1993–2024 (2015)

    Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Subbanna, N.K., Precup, D., Collins, D.L., Arbel, T.: Hierarchical probabilistic gabor and MRF segmentation of brain tumours in MRI volumes. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 751–758. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_94

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew Jesson or Tal Arbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jesson, A., Arbel, T. (2018). Brain Tumor Segmentation Using a 3D FCN with Multi-scale Loss . In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science(), vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75238-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75237-2

  • Online ISBN: 978-3-319-75238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics