Skip to main content

Lesion Detection, Segmentation and Prediction in Multiple Sclerosis Clinical Trials

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10670))

Included in the following conference series:

Abstract

A variety of automatic segmentation techniques have been successfully applied to the delineation of larger T2 lesions in patient MRI in the context of Multiple Sclerosis (MS), assisting in the estimation of lesion volume, a common clinical measure of disease activity and stage. In the context of clinical trials, however, a wider number of metrics are required to determine the “burden of disease” and activity in order to measure treatment efficacy. These include: (1) the number and volume of T2 lesions in MRI, (2) the number of new and enlarging T2 volumes in longitudinal MRI, and (3) the number of gadolinium enhancing lesions in T1 MRI, the portion of lesions that enhance in T1w MRI after injection with a contrast agent, often associated with active inflammations. In this context, accurate lesion detection must ensure that even small lesions (e.g. 3 to 10 voxels) are detected as they are prevalent in trials. Manual or semi-manual approaches are too time-consuming, inconsistent and expensive to be practical in large clinical trials. To this end, we present a series of fully-automatic, probabilistic machine learning frameworks to detect and segment all lesions in patient MRI, and show their accuracy and robustness in large multi-center, multi-scanner, clinical trial datasets. Several of these algorithms have been placed into a commercial software analysis pipeline, where they have assisted in improving the efficiency and precision of the development of most new MS treatments worldwide. Recent work has shown how a new Bag-of-Lesions brain representation can be used in the context of clinical trials to automatically predict the probability of future disease activity and potential treatment responders, leading to the possibility of personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakshi, R., et al.: MRI in Multiple Sclerosis: current status and future prospects. Lancet Neurol. 7(7), 615–625 (2008)

    Article  Google Scholar 

  2. Barkhof, F., et al.: Comparison of MRI criteria at first presentation to predict conversion to clinically definite Multiple Sclerosis. Brain 120(11), 2059–2069 (1997)

    Article  Google Scholar 

  3. Brosch, T., Yoo, Y., Li, D.K.B., Traboulsee, A., Tam, R.: Modeling the variability in brain morphology and lesion distribution in multiple sclerosis by deep learning. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 462–469. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_58

    Google Scholar 

  4. Cabezas, M., et al.: A review of atlas-based segmentation for magnetic resonance brain images. Comput. Methods Programs Biomed. 104(3), e158–177 (2011)

    Article  Google Scholar 

  5. Díaz-Uriarte, R., De Andres, S.A.: Gene selection and classification of microarray data using random forest. BMC Bioinform. 7(1), 3 (2006)

    Article  Google Scholar 

  6. Doyle, A., Precup, D., Arnold, D.L., Arbel, T.: Predicting future disease activity and treatment responders for multiple sclerosis patients using a bag-of-lesions brain representation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 186–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_22

    Chapter  Google Scholar 

  7. Elliott, C.: A Bayesian framework for 4-D segmentation of Multiple Sclerosis lesions in serial MRI in the brain. Ph.D. thesis, McGill University Libraries (2016)

    Google Scholar 

  8. Elliott, C., et al.: Temporally consistent probabilistic detection of new Multiple Sclerosis lesions in brain MRI. IEEE TMI 32(8), 1490–1503 (2013)

    Google Scholar 

  9. Elliott, C., et al.: A generative model for automatic detection of resolving Multiple Sclerosis lesions. In: BAMBI (2014)

    Google Scholar 

  10. Filippi, M., et al.: Association between pathological and MRI findings in Multiple Sclerosis. Lancet Neurol. 11(4), 349–360 (2012)

    Article  Google Scholar 

  11. Fischl, B., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)

    Article  Google Scholar 

  12. Karimaghaloo, Z., et al.: Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images. MIA 27, 17–30 (2016)

    Google Scholar 

  13. Karimaghaloo, Z., et al.: Temporal hierarchical adaptive texture CRF for automatic detection of gadolinium-enhancing Multiple Sclerosis lesions in brain MRI. IEEE TMI 34(6), 1227–1241 (2015)

    Google Scholar 

  14. Karimaghaloo, Z., Shah, M., Francis, S.J., Arnold, D.L., Collins, D.L., Arbel, T.: Detection of gad-enhancing lesions in multiple sclerosis using conditional random fields. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 41–48. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15711-0_6

    Chapter  Google Scholar 

  15. Karimaghaloo, Z., et al.: Automatic detection of gadolinium-enhancing Multiple Sclerosis lesions in brain MRI using conditional random fields. IEEE TMI 31(6), 1181–1194 (2012)

    Google Scholar 

  16. Lee, M., et al.: Defining Multiple Sclerosis disease activity using MRI T2-weighted difference imaging. Brain 121(11), 2095–2102 (1998)

    Article  Google Scholar 

  17. Meier, D., et al.: MR imaging intensity modeling of damage and repair in Multiple Sclerosis: relationship of short-term lesion recovery to progression and disability. Am. J. Neuroradiol. 28(10), 1956–1963 (2007)

    Article  Google Scholar 

  18. Milletari, F., et al.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3D Vision, pp. 565–571. IEEE (2016)

    Google Scholar 

  19. Sormani, M.P., et al.: Magnetic resonance active lesions as individual-level surrogate for relapses in Multiple Sclerosis. Mult. Scler. J. 17(5), 541–549 (2011)

    Article  Google Scholar 

  20. Subbanna, N., Precup, D., Arnold, D., Arbel, T.: IMaGe: iterative multilevel probabilistic graphical model for detection and segmentation of Multiple Sclerosis lesions in Brain MRI. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 514–526. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19992-4_40

    Chapter  Google Scholar 

  21. Subbanna, N.: Iterative Multilevel Probabilistic Graphical Model for Detection and Segmentation of Tumours and Lesions in Brain MRI. Ph.D. thesis, McGill University (2016)

    Google Scholar 

  22. Wang, H., et al.: Multi-atlas segmentation with joint label fusion. IEEE TPAMI 35(3), 611–623 (2013)

    Article  Google Scholar 

  23. Warfield, S.K., et al.: Adaptive, template moderated, spatially varying statistical classification. MIA 4(1), 43–55 (2000)

    Google Scholar 

  24. Yoo, Y., Tang, L.W., Brosch, T., Li, D.K.B., Metz, L., Traboulsee, A., Tam, R.: Deep learning of brain lesion patterns for predicting future disease activity in patients with early symptoms of multiple sclerosis. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 86–94. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_10

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Canadian Natural Science and Engineering Research Council collaborative Research and Development Grant (CRDPJ 411455-10), and an International Progressive MS Alliance Collaborative Network Award (PA-1603-08175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tal Arbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doyle, A., Elliott, C., Karimaghaloo, Z., Subbanna, N., Arnold, D.L., Arbel, T. (2018). Lesion Detection, Segmentation and Prediction in Multiple Sclerosis Clinical Trials. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science(), vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75238-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75237-2

  • Online ISBN: 978-3-319-75238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics