Skip to main content

Deep Neural Networks for Shimmer Approximation in Synthesized Audio Signal

  • Conference paper
  • First Online:
Computer Science – CACIC 2017 (CACIC 2017)

Abstract

Shimmer is a classical acoustic measure of the amplitude perturbation in a signal. This kind of variation in the human voice allows to characterize some properties, not only of the voice itself, but of the person who speaks. During the last years deep learning techniques have become the state of the art for recognition tasks on the voice. In this work the relationship between shimmer and deep neural networks is analyzed. A deep learning model is created. It is able to approximate shimmer value of a simple synthesized audio signal (stationary and without formants) taking the spectrogram as input feature. It is concluded firstly, that for this kind of synthesized signal, a neural network like the one we proposed can approximate shimmer, and secondly, that the convolution layers can be designed in order to preserve the information of shimmer and transmit it to the following layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jafari, M., Till, J.A., Law-Till, C.B.: Interactive effects of local smoothing window size and fundamental frequency on shimmer calculation. J. Voice 7(3), 235–241 (1993)

    Article  Google Scholar 

  2. Nieto, R.G., Marín-Hurtado, J.I., Capacho-Valbuena, L.M., Suarez, A.A., Bolaños, E.A.B.: Pattern recognition of hypernasality in voice of patients with cleft and lip palate. In: 2014 XIX Symposium on Image, Signal Processing and Artificial Vision (STSIVA), pp. 1–5. IEEE (2014)

    Google Scholar 

  3. Holi, M.S., et al.: A hybrid model for neurological disordered voice classification using time and frequency domain features. Artif. Intell. Res. 5(1), 87 (2015)

    Google Scholar 

  4. Freitas, S.V., Pestana, P.M., Almeida, V., Ferreira, A.: Integrating voice evaluation: correlation between acoustic and audio-perceptual measures. J. Voice 29(3), 390–e1 (2015)

    Google Scholar 

  5. Little, M.A., Costello, D.A., Harries, M.L.: Objective dysphonia quantification in vocal fold paralysis: comparing nonlinear with classical measures. J. Voice 25(1), 21–31 (2011)

    Article  Google Scholar 

  6. Lopes, L.W., Simões, L.B., da Silva, J.D., da Silva Evangelista, D., da Nóbrega E Ugulino, A.C., Silva, P.O.C., Vieira, V.J.D.: Accuracy of acoustic analysis measurements in the evaluation of patients with different laryngeal diagnoses. J. Voice 31(3), 382–e15 (2017)

    Google Scholar 

  7. Hillenbrand, J.: Perception of aperiodicities in synthetically generated voices. J. Acoust. Soc. Am. 83(6), 2361–2371 (1988)

    Article  Google Scholar 

  8. Li, X., Tao, J., Johnson, M.T., Soltis, J., Savage, A., Leong, K.M., Newman, J.D.: Stress and emotion classification using jitter and shimmer features. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, vol. 4, p. IV-1081. IEEE (2007)

    Google Scholar 

  9. Kotti, M., Stylianou, Y.: Effective emotion recognition in movie audio tracks. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5120–5124. IEEE (2017)

    Google Scholar 

  10. Jacob, A.: Speech emotion recognition based on minimal voice quality features. In: 2016 International Conference on Communication and Signal Processing (ICCSP), pp. 0886–0890. IEEE (2016)

    Google Scholar 

  11. Sondhi, S., Vijay, R., Khan, M., Salhan, A.K.: Voice analysis for detection of deception. In: 2016 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS), pp. 1–6. IEEE (2016)

    Google Scholar 

  12. Palo, H.K., Mohanty, M.N., Chandra, M.: Sad state analysis of speech signals using different clustering algorithm. In: 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), pp. 714–718. IEEE (2016)

    Google Scholar 

  13. Schuller, B., Steidl, S., Batliner, A.: The interspeech 2009 emotion challenge. In: Tenth Annual Conference of the International Speech Communication Association (2009)

    Google Scholar 

  14. Kim, H.J., Bae, K., Yoon, H.S.: Age and gender classification for a home-robot service. In: The 16th IEEE International Symposium on Robot and Human interactive Communication, RO-MAN 2007, pp. 122–126. IEEE (2007)

    Google Scholar 

  15. Teixeira, J.P., Fernandes, P.O.: Jitter, shimmer and hnr classification within gender, tones and vowels in healthy voices. Procedia Technol. 16, 1228–1237 (2014)

    Article  Google Scholar 

  16. Tsanas, A., Little, M.A., Fox, C., Ramig, L.O.: Objective automatic assessment of rehabilitative speech treatment in parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 22(1), 181–190 (2014)

    Article  Google Scholar 

  17. Gómez-Coello, A., Valadez-Jiménez, V.M., Cisneros, B., Carrillo-Mora, P., Parra-Cárdenas, M., Hernández-Hernández, O., Magaña, J.J.: Voice alterations in patients with spinocerebellar ataxia type 7 (sca7): Clinical-genetic correlations. J. Voice 31(1), 123-e1 (2017)

    Google Scholar 

  18. Kotti, M., Paternò, F.: Speaker-independent emotion recognition exploiting a psychologically-inspired binary cascade classification schema. Int. J. Speech Technol. 15(2), 131–150 (2012)

    Article  Google Scholar 

  19. Yamasaki, R., Montagnoli, A., Murano, E.Z., Gebrim, E., Hachiya, A., da Silva, J.V.L., Behlau, M., Tsuji, D.: Perturbation measurements on the degree of naturalness of synthesized vowels. J. Voice 31(3), 389–e1 (2017)

    Article  Google Scholar 

  20. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  21. Mitra, V., Sivaraman, G., Nam, H., Espy-Wilson, C., Saltzman, E., Tiede, M.: Hybrid convolutional neural networks for articulatory and acoustic information based speech recognition. Speech Commun. 89, 103–112 (2017)

    Article  Google Scholar 

  22. Collobert, R., Puhrsch, C., Synnaeve, G.: Wav2letter: an end-to-end convnet-based speech recognition system. arXiv preprint arXiv:1609.03193 (2016)

  23. Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng, Q., Chen, G., et al.: Deep speech 2: end-to-end speech recognition in English and Mandarin. In: International Conference on Machine Learning, pp. 173–182 (2016)

    Google Scholar 

  24. Palaz, D., Collobert, R., et al.: Analysis of CNN-based speech recognition system using raw speech as input. Technical report, Idiap (2015)

    Google Scholar 

  25. Sainath, T.N., Kingsbury, B., Mohamed, A.R., Ramabhadran, B.: Learning filter banks within a deep neural network framework. In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 297–302. IEEE (2013)

    Google Scholar 

  26. Farrús, M.: Jitter and shimmer measurements for speaker recognition. In: 8th Annual Conference of the International Speech Communication Association, ISCA; 2007, pp. 778–781, International Speech Communication Association (ISCA) (2007)

    Google Scholar 

  27. Gu, Y., Li, X., Chen, S., Zhang, J., Marsic, I.: Speech intention classification with multimodal deep learning. In: Mouhoub, M., Langlais, P. (eds.) AI 2017. LNCS (LNAI), vol. 10233, pp. 260–271. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57351-9_30

    Chapter  Google Scholar 

  28. Chang, J., Scherer, S.: Learning representations of emotional speech with deep convolutional generative adversarial networks. arXiv preprint arXiv:1705.02394 (2017)

  29. Ghosh, S., Laksana, E., Morency, L.P., Scherer, S.: Representation learning for speech emotion recognition. In: INTERSPEECH, pp. 3603–3607 (2016)

    Google Scholar 

  30. Mao, Q., Dong, M., Huang, Z., Zhan, Y.: Learning salient features for speech emotion recognition using convolutional neural networks. IEEE Trans. Multimed. 16(8), 2203–2213 (2014)

    Article  Google Scholar 

  31. Ma, X., Yang, H., Chen, Q., Huang, D., Wang, Y.: DepAudioNet: an efficient deep model for audio based depression classification. In: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge, pp. 35–42. ACM (2016)

    Google Scholar 

  32. Abumallouh, A., Qawaqneh, Z., Barkana, B.D.: Deep neural network combined posteriors for speakers’ age and gender classification. In: Annual Connecticut Conference on Industrial Electronics, Technology & Automation (CT-IETA), pp. 1–5. IEEE (2016)

    Google Scholar 

  33. Qawaqneh, Z., Mallouh, A.A., Barkana, B.D.: Deep neural network framework and transformed mfccs for speaker’s age and gender classification. Knowl. -Based Syst. 115, 5–14 (2017)

    Article  Google Scholar 

  34. Liu, Y., Wang, X., Hang, Y., He, L., Yin, H., Liu, C.: Hypemasality detection in cleft palate speech based on natural computation. In: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 523–528. IEEE (2016)

    Google Scholar 

  35. Cummins, N., Epps, J., Ambikairajah, E.: Spectro-temporal analysis of speech affected by depression and psychomotor retardation. In: 2013 IEEE International Conference on, Acoustics, Speech and Signal Processing (ICASSP), pp. 7542–7546. IEEE (2013)

    Google Scholar 

  36. Teixeira, J.P., Gonçalves, A.: Algorithm for jitter and shimmer measurement in pathologic voices. Procedia Comput. Sci. 100, 271–279 (2016)

    Article  Google Scholar 

  37. Shahnaz, C., Zhu, W.P., Ahmad, M.O.: A new technique for the estimation of jitter and shimmer of voiced speech signal. In: Canadian Conference on Electrical and Computer Engineering, CCECE 2006, pp. 2112–2115. IEEE (2006)

    Google Scholar 

  38. Dong, B.: Characterizing resonant component in speech: a different view of tracking fundamental frequency. Mech. Syst. Sig. Process. 88, 318–333 (2017)

    Article  Google Scholar 

  39. Liu, B., Tao, J., Zhang, D., Zheng, Y.: A novel pitch extraction based on jointly trained deep BLSTM recurrent neural networks with bottleneck features. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 336–340. IEEE (2017)

    Google Scholar 

  40. Schlotthauer, G., Torres, M.E., Rufiner, H.L.: A new algorithm for instantaneous F0 speech extraction based on ensemble empirical mode decomposition. In: 2009 17th European Signal Processing Conference, pp. 2347–2351. IEEE (2009)

    Google Scholar 

  41. Buder, E.H.: Acoustic analysis of voice quality: a tabulation of algorithms 1902–1990. In: Voice Quality Measurement, pp. 119–244 (2000)

    Google Scholar 

  42. Klingholz, F., Martin, F.: Quantitative spectral evaluation of shimmer and jitter. J. Speech Hear. Res. 28(2), 169–174 (1985)

    Article  Google Scholar 

  43. Schnupp, J., Nelken, I., King, A.: Auditory Neuroscience: Making Sense of Sound. MIT Press, Cambridge (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Alejandro García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García, M.A., Destéfanis, E.A. (2018). Deep Neural Networks for Shimmer Approximation in Synthesized Audio Signal. In: De Giusti, A. (eds) Computer Science – CACIC 2017. CACIC 2017. Communications in Computer and Information Science, vol 790. Springer, Cham. https://doi.org/10.1007/978-3-319-75214-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75214-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75213-6

  • Online ISBN: 978-3-319-75214-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics