Skip to main content

Nanofiltration of Dye Bath Towards Zero Liquid Discharge: A Technical and Economic Evaluation

  • Chapter
  • First Online:
Water Scarcity and Ways to Reduce the Impact

Abstract

A dye bath effluent is the most resource-rich stream in a dye house in the textile industry with almost all salts used and 0–40% of unfixed dyes, and 10% of water in a wet process . A lot of effort has been made to breakdown dyes physically, chemically and biologically and mainly for meeting the local government discharge standard, however, salts in the dye bath are unchanged and are simply diluted and discharged to the environment. Both salts and dyes are valuable commodities. If they are recovered, less resources will be wasted and less damage will be done to the environment. This is beneficial to both the industries and the environment. Membrane filtration is an effective tool to separate chemicals according to their sizes and surface charges without altering their properties. In this chapter, we reviewed the development of Nanofiltration membrane technology (NF) in terms of lower salt rejection and membrane fouling and proposed the mechanisms of membrane pore enlargement during separating salts from dye in a dyebath for recovery, recycling and reuse. We also mentioned the industries that use dyes and pigments in their daily operations. We have concluded that membrane swelling/pore enlargement remains a challenge on NF application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allègre, C., Moulin, P., Maisseu, M., & Charbit, F. (2004). Savings and re-use of salts and water present in dye house effulents. Desalination, 162, 13–22.

    Article  Google Scholar 

  • Allègre, C., Moulin, P., Maisseu, M., & Charbit, F. (2006). Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269, 15–34.

    Article  CAS  Google Scholar 

  • Álvarez, M. S., Moscoso, F., Rodríguez, A., Sanromán, M. A., & Deive, F. J. (2013). Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents. Bioresource Technology, 146, 689–695.

    Article  CAS  Google Scholar 

  • Amaral, F. M., Kato, M. T., Florêncio, L., & Gavazza, S. (2014). Color, organic matter and sulphate removal from textile effluents by anaerobic and aerobic processes. Bioresource Technology, 163, 264–369.

    Article  CAS  Google Scholar 

  • Ammar, A., Dofan, I., Jegatheesan, V., Muthukumaran, S., & Shu, L. (2015). Comparison between nanofiltration and forward osmosis in the treatment of dye solutions. Desalination and Water Treatment, 54, 853–861.

    Article  CAS  Google Scholar 

  • Aouni, A., Fersi, C., Cuartas-Uribe, B., Bes-Pía, A., Alcaina-Mirande, M. I., & Dhahbi, M. (2012). Reactive dyes rejection and textile effluent treatment study using ultrafiltration and nanofiltration processes. Desalination, 297, 87–96.

    Article  CAS  Google Scholar 

  • Bakheet, B., Yuan, S., Li, Z., Wang, H., Zuo, J., Komarneni, S., et al. (2013). Electro-peroxone treatment of orange II dye wastewater. Water Research, 47, 6234–6243.

    Article  CAS  Google Scholar 

  • Balapure, K., Jain, K., Bhatt, N., & Madamwar, D. (2016). Exploring bioremediation strategies to enhance the mineralization of textile industrial wastewater through sequential anaerobic-microaerophilic process. International Biodeterioration & Bidegradation, 106, 97–105.

    Article  CAS  Google Scholar 

  • Bella, F., Lamberti, A., Sacco, A., Bianco, A., & Chiodoni, R. Bongiovanni. (2014). Novel electrode and electrolyte membranes: Towrds flexible dye-sensitized solar cell combining vertical aligned TiO2 nanotube array and light-cured polymer network. Journal of Membrane Science, 470, 125–131.

    Article  CAS  Google Scholar 

  • Chafi, C., Gourich, B., Essadki, A. H., Vial, C., & Fabregat, A. (2011). Comparison of electrocoagulation using iron and aluminium electrodes using chemical coagulation for the removal of a highly soluble acid dye. Desalination, 281, 285–292.

    Article  CAS  Google Scholar 

  • Charumathi, D., & Das, N. (2012). Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. tropicalis. Desalination, 285, 22–30.

    Article  CAS  Google Scholar 

  • Chattopadhyay, S. N., Pan, N. C., & Day, A. (2006). Reuse of reactive dyes for dyeing of jute fabric. Bioresource Technology, 97, 77–83.

    Article  CAS  Google Scholar 

  • Chen, G., Chai, X., Yue, P., & Mi, Y. (1997). Treatment of textile desizing wastewater by pilot scale nanofiltration membrane separation. Journal of Membrane Science, 127, 93–99.

    Article  CAS  Google Scholar 

  • Chidambaram, T., Oren, Y., & Noel, M. (2015). Fouling of nanofiltration membrane by dyes during brine recovery from textile dye bath wastewater. Chemical Engineering Journal, 262, 155–168.

    Article  CAS  Google Scholar 

  • Chipperfield, D. (2012). Colour in mass concrete and pigment. Barcelona, Spain: Actar.

    Google Scholar 

  • Cruz-González, K., Torres-Lopez, O., García-León, A. M., Brillas, E., Hernández-Ramírez, A., & Peralta-Hernández, J. (2012). Optimization of electro-Fenton/BDD process for decolorization of model azo dye wastewater by means of response surface methodology. Desalination, 286, 63–68.

    Article  CAS  Google Scholar 

  • Daraei, P., Madaeni, S. S., Salehi, E., Ghaemi, N., Ghari, H. S., Khadivi, M. A., et al. (2013). Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support: Preparation, characterization and performance in dye removal. Journal of Membrane Science, 436, 97–108.

    Article  CAS  Google Scholar 

  • Denyer, P., Shu, L., & Jegatheesan, V. (2007). Evidence of changes in membrane pore characteristics due to filtration of dye bath liquors. Desalination, 204, 296–306.

    Article  CAS  Google Scholar 

  • Deowan, S. A., Galiano, F., Hoinkis, J., Johnson, D., Altinkaya, S. A., Gabriele, B., et al. (2016). Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment. Journal of Membrane Science, 510, 524–532.

    Article  CAS  Google Scholar 

  • Errais, E., Duplay, J., Darragi, F., M’Rabet, I., Aubert, A., Huber, F., et al. (2011). Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters. Desalination, 275, 74–81.

    Article  CAS  Google Scholar 

  • Firmino, P. I. M., da Silva, M. E. R., Cervantes, F. J., dos Santos, A. B. (2010). Colour removal of dyes from synthetic and real textile wastewaters in one- and two-stage anaerobic systems. Bioresource Technology, 101, 7773–7779.

    Article  CAS  Google Scholar 

  • Franca, R. D. G., Vieira, A., Mata, A. M. T., Carvalho, G. S., Pinheiro, H. M., & Lourenço, N. D. (2015). Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater. Water Research, 85, 327–336.

    Article  CAS  Google Scholar 

  • Greluk, M., & Hubicki, Z. (2011). Efficient removal of Acid Orange 7 dye from water using the strongly basic anion exchange resin Amberlite IRA-958. Desalination, 278, 219–226.

    Article  CAS  Google Scholar 

  • Hai, F. I., Yamamoto, K., Nakajima, F., & Fukushi, K. (2012). Application of a GAC-coated hollow fiber module to couple enzymatic degradation of dye on membrane to whole cell biodegradation within a membrane bioreactor. Journal of Membrane Science, 389, 67–75.

    Article  CAS  Google Scholar 

  • Hall, A. J. (1965). The standard handbook of textiles. London: Temple Press Books LTD.

    Google Scholar 

  • Han, G., Liang, C., Chung, T., Weber, M., Staudt, C., & Maletzko, C. (2016). Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Research, 91, 361–370.

    Article  CAS  Google Scholar 

  • Harris, R. M. (1999). Coloring technology for plastics. NY, the United State of America: Plastic Design Library.

    Google Scholar 

  • He, Y., Wang, X., Xu, J., Yan, J., Ge, Q., Gu, X., et al. (2013). Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents. Bioresource Technology, 133, 150–157.

    Article  CAS  Google Scholar 

  • Hessel, C., Allegre, C., Maisseu, M., Charbit, F., & Moulin, P. (2007). Guidelines and legislation for dye house effluents. Journal of Environmental Management, 83, 171–180.

    Article  CAS  Google Scholar 

  • Huang, L., Sun, G., Yang, T., Zhang, B., He, Y., & Wang, X. (2013). A preliminary study of anaerobic treatment coupled with micro-electrolysis for anthraquinone dye wastewater. Desalination, 309, 91–96.

    Article  CAS  Google Scholar 

  • Huang, J., & Zhang, K. (2011). Thigh high flux poly(m-phenylene isophthalamide) nanofiltration membrane for dye purification and desalination. Desalination, 282, 19–26.

    Article  CAS  Google Scholar 

  • Ismail, A. F., & Lau, W. J. (2009). Influence of feed conditions on the rejection of salt and dye in aqueous solution by different characteristics of hollow fiber nanofiltration membrane. Desalination and Water Treatment, 6, 281–288.

    Article  CAS  Google Scholar 

  • Jegatheesan, V., Pramanik, B. K., Chen, J., Navaratna, D., Chang, C., & Shu, L. (2016). Treatment of textile wastewater with membrane bioreactor: A critical review. Bioresource Technology, 204, 202–212.

    Article  CAS  Google Scholar 

  • Jin, L., Sun, Q., Xu, Q., & Xu, Y. (2015). Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresource Technology, 197, 348–355.

    Article  CAS  Google Scholar 

  • Kabra, A. N., Khandare, Rahul V., & Govindwar, S. P. (2013). Development of a bioreactor for remediation of textile effluent and dye mixture: A plant-bacterial synergistic strategy. Water Research, 47, 1035–1048.

    Article  CAS  Google Scholar 

  • Kadam, A. A., Lade, H. S., Lee, D. S., & Govindwar, S. P. (2015). Zinc chloride as a coagulant for textile dyes and treatment of generated dye sludge under the solid state fermentation: Hybrid treatment strategy. Bioresource Technology, 176, 38–46.

    Article  CAS  Google Scholar 

  • Kajekar, A., Dodamani, B. M., Isloor, A. M., Karim, Z. A., & Cheer, N. B. (2015). Preparation and characterisation of novel PSf/PVP/PANI-nanofiber nanocomposite hollow fiber ultrafiltration membranes and their possible applications for hazardous dye rejection. Desalination, 365, 117–125.

    Article  CAS  Google Scholar 

  • Kebria, M. Z. S., Jahanshahi, M., & Rahimpour, A. (2015). SiO2 modified polytheleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions. Desalination, 367, 255–264.

    Article  CAS  Google Scholar 

  • Kertèsz, S., Cakl, J., & Jiránková, H. (2014). Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment. Desalination, 343, 106–112.

    Article  CAS  Google Scholar 

  • Khorramfar, S., Mahmoodi, N. M., Arami, M., & Bahrami, H. (2011). Oxidation of dyes from colored wastewater using activated carbon/hydrogen peroxide. Desalination, 279, 183–189.

    Article  CAS  Google Scholar 

  • Kong, F., Wang, A., & Ren, H. (2015). Optimization of working cathode position in sleeve-type bioelectrochemical system with inner chamber/outer chamber. Bioresource Technology, 198, 437–444.

    Article  CAS  Google Scholar 

  • Kurt, E., Koseoglu-Imer, D. Y., Dizge, N., Chellam, S., & Koyuncu, I. (2012). Pilot-scale evaluation of nanofiltration and reverse osmosis for process reuse of segregated textile dyewash wastewater. Desalination, 302, 24–32.

    Article  CAS  Google Scholar 

  • Lau, W., & Ismail, A. F. (2009). Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control—A review. Desalination, 245, 321–348.

    Article  CAS  Google Scholar 

  • Lee, S. S., Bai, H., Liu, Z., & Sun, D. D. (2013). Novel-structured electronspun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Research, 47, 4059–4073.

    Article  CAS  Google Scholar 

  • Lee, K., Beak, H., & Choo, K. (2015). Membrane photoreactor treatment of 1,4-dioxane-containing textile wastewater effluent: Performance, modelling, and fouling control. Water Research, 86, 58–65.

    Article  CAS  Google Scholar 

  • Li, X., Chen, Y., Hu, X., Zhang, Y., & Hu, L. (2014). Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. Journal of Membrane Science, 471, 118–129.

    Article  CAS  Google Scholar 

  • Li, C., & He, J. (2013). Advanced treatment of spend acid dyebath and reuse of water, salt and surfactant therein. Journal of Cleaner Production, 59, 86–92.

    Article  CAS  Google Scholar 

  • Li, Y., Yang, H., Shen, J., Mu, Y., & Yu, H. (2016). Enhancement of azo dye decolourization in a MFC-MEC coupled system. Bioresource Technology, 202, 93–100.

    Article  CAS  Google Scholar 

  • Li, S., Zhang, H., Feng, J., Xu, R., & Liu, X. (2011). Facile preparation of poly(acrylic acid-acrylamide) hydrogels by frontal polymerization and their use in removal of cationic dyes from aqueous solution. Desalination, 280, 95–102.

    Article  CAS  Google Scholar 

  • Liang, P., Rivallin, M., Cerneaux, S., Lacour, S., Petit, E., & Cretin, M. (2016). Coupling cathodic Electro-Fenton reaction to membrane filtration for AO7 dye degradation: A successful feasibility study. Journal of Membrane Science, 510, 182–190.

    Article  CAS  Google Scholar 

  • Liang, C., Sun, S., Li, F., Ong, Y., & Chung, T. (2014). Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. Journal of Membrane Science, 469, 306–315.

    Article  CAS  Google Scholar 

  • Lin, C., Gung, C., Sun, J., & Suen, S. (2014). Preparation of polyethersulfone/plant-waste-particles mixed matrix membranes for adsorptive removal of cationic dyes from water. Journal of Membrane Science, 471, 285–298.

    Article  CAS  Google Scholar 

  • Lin, J., Tang, C. Y., Ye, W., Shi Sun, S. P., Hamdan, S. H., Volodin, A., et al. (2015a). Unraveling flux behaviour of superhydrophilic loose nanofiltratin membranes during textile wastewater treatment. Journal of Membrane Science, 493, 690–702.

    Article  CAS  Google Scholar 

  • Lin, J., Ye, W., Zeng, H., Yang, H., Shen, J., Darvishmanesh, S., et al. (2015b). Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. Journal of Membrane Science, 477, 183–193.

    Article  CAS  Google Scholar 

  • Lotit, A. M., Sactis, M. D., & Iaconi, C. D. (2014). Textile wastewater treatment: Aerobic granular sludge vs activated sludge systems. Water Research, 54, 337–346.

    Article  CAS  Google Scholar 

  • Ma, S., Meng, J., Li, J., Zhang, Y., & Ni, L. (2014). Synthesis of catalytic polypropylene membranes enabling visible-light-driven photocatalytic degradation on dyes in water. Journal of Membrane Science, 453, 221–229.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M. (2011). Photocatalytic ozonation of dyes using copper ferrite nanoparticles prepared by co-precipitation method. Desalination, 279, 332–337.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M., Khorramfar, S., & Najafi, F. (2011a). Amine-functionalized silica nanoparticles: Preparation, characterization and anionic dye removal ability. Desalination, 279, 61–68.

    Article  CAS  Google Scholar 

  • Mahmoodi, N. M., Salehi, R., & Arami, M. (2011b). Binary system dye removal from colored textile wastewater using activated carbon: Kinetic and isotherm studies. Desalination, 272, 187–195.

    Article  CAS  Google Scholar 

  • Malachova, K., Rybkova, Z., Sezimova, H., Cerven, J., & Novotny, C. (2013). Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater. Water Research, 47, 7143–7148.

    Article  CAS  Google Scholar 

  • Manekar, P., Patkar, G., Aswale, P., Mahure, M., & Nandy, T. (2014). Detoxifying of high strength textile effluent through chemical and bio-oxidation processes. Bioresource Technology, 157, 44–51.

    Article  CAS  Google Scholar 

  • Maurya, S. K., Parashuram, K., Singh, P. S., Ray, P., & Reddy, A. V. R. (2012). Preparation of polysulfone-polyamide thin film composite hollow fiber nanofiltration membranes and their performance in the treatment of aquous dye solutions. Desalination, 304, 11–19.

    Article  CAS  Google Scholar 

  • Neta, J. J. S., Moreira, G. C., Silva, C. J., Reis, C., & Reis, E. L. (2011). Use of polyurethane foam for the removal of the Derect Red 80 and Reactive Blue 21 dyes in aqueous medium. Desalination, 281, 55–60.

    Article  CAS  Google Scholar 

  • Ong, Y. K., Li, F. Y., Sun, S., Zhao, B., Liang, C., & Chung, T. (2014). Nanofiltration ollow filber membrens for textile wastewater treatment: Lab-scale and pilot-scqale studies. Chemical Engineering Science, 114, 51–57.

    Article  CAS  Google Scholar 

  • Ozdemir, S., Cirik, K., Akman, D., Sahinkaya, E., & Cinar, O. (2013). Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor. Bioresource Technology, 146, 13–143.

    Article  CAS  Google Scholar 

  • Patel, T. M., & Nath, K. (2013). Alleviation of flux decline in cross flow nanofiltration of two-component dye and salt mixture by low frequency ultrasonic irradiation. Desalination, 317, 132–141.

    Article  CAS  Google Scholar 

  • Porter, J. J. (1998). Recovery of polyvinyl alcohol and hot water from the textile wastewater using thermally stable membranes. Journal of Membrane Science, 151, 45–53.

    Article  CAS  Google Scholar 

  • Praneeth, K., Manjunath, D., Bhargava, S. K., Tardio, J., & Sridhar, S. (2014). Economic treatment of reverse osmosis reject of textile industry effluent by electrodialysis—Evaporation integrated process. Desalination, 333, 82–91.

    Article  CAS  Google Scholar 

  • Quan, X., Zhang, X., & Xu, H. (2015). In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation. Water Research, 78, 74–83.

    Article  CAS  Google Scholar 

  • Ranganathan, K., Karunagaran, K., & Sharma, D. C. (2007). Recycling of wastewaters of textile dyeing industries using advanced analysis—Case studies. Resource, Conservation and Recycling, 50, 306–318.

    Article  Google Scholar 

  • Rauf, M. A., Meetani, M. A., & Hisaindee, S. (2011). An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination, 276, 13–27.

    Article  CAS  Google Scholar 

  • Rosales, E., Pazos, M., Sanromán, M. A., & Tavares, T. (2012). Application of zeolite-Arthrobacter viscosus system for the removal of heavy metal and dye: Chromium and Azure B. Desalination, 284, 150–156.

    Article  CAS  Google Scholar 

  • Sala, M., & Gutiérrez-Bouzán, M. C. (2014). Electrochemical treatment of industrial wastewater and effluent reuse at laboratory and semi-industrial scale. Journal of Cleaner Production, 65, 458–464.

    Article  CAS  Google Scholar 

  • Salima, A., Benaouda, B., Noureddine, B., Duclaux, L. (2013). Application of Ulva lactuca and Systoceira stricta algae-based activated carbon to hazardous cationic dyes removal from industrial effluents. Water Research, 47, 3375–3388.

    Article  CAS  Google Scholar 

  • Salleh, M. A. M., Mahmoud, D. K., Wan, W. A., Karim, A., Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13.

    Article  CAS  Google Scholar 

  • Samhaber, W. M., & Nguyen, M. T. (2014). Application and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents. Beistein Journal of Nanotechnology, 5, 476–484.

    Article  CAS  Google Scholar 

  • Shu, L. (2000). Membrane processing of dye wastewater: Dye aggregation, membrane performance and mathematical modelling. University of New South Wales.

    Google Scholar 

  • Shu, L., Wu, S., Jegatheesan, V. (2013). Directly observe sodium chloride aggregates waltzing through dilute solutions. In L. Shu, V. Jegatheesan, A. Pandey, J. Virkutyte, H. Djati Utomo (Eds.), Solutions to environmental challenges through innovations in research (pp. 213–223). New Delhi, India: Asiatech Publishers, Inc.

    Google Scholar 

  • Shu, L., Waite, T. D., Bliss, P. J., Fane, A. G., Jegatheesan, V. (2005). Nanofiltration for the possible reuse of water and recovery of sodium chloride salt from textile effluent. Desalination, 172(3), 235–243.

    Article  CAS  Google Scholar 

  • Shu, L., Obagbemi, I. J., Jegatheesan, V., Liyanaarachchi, S., Baskaran, K. (2015). Effect of multiple cations in the feed solution on the performance of forward osmosis. Desalination and Water Treatment, 54(4–5), 845–852.

    Google Scholar 

  • Singh, R. L., Singh, P. K., & Singh, R. P. (2015). Enzymatic decolorization and degradation of azo dyes—A review. International Biodeterioration & Bidegradation, 104, 21–31.

    Article  CAS  Google Scholar 

  • Spagni, A., Grilli, S., Casu, S., & Mattioli, D. (2010). Treatment of a simulated textile wastewater containing the azo-dye reactive orange 16 in an anaerobic-biofilm anoxic-aerobic membrane bioreactor. International Biodeterioration & Bidegradation, 64, 676–681.

    Article  CAS  Google Scholar 

  • Spagni, A., Grilli, S., Casu, S., & Mattioli, D. (2012). Decolorisation of textile wastewater in a submerged anaerobic membrane bioreactor. Bioresource Technology, 117, 180–185.

    Article  CAS  Google Scholar 

  • Su, C., Pukdee-Asa, M., Ratanatamskul, C., & Lu, M. (2011). Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton’s reagent using fluidized-bed reactor. Desalination, 278, 211–218.

    Article  CAS  Google Scholar 

  • Sundrarajan, M., & Joseph, G. V. K. (2007). Decolorisation of exhausted reactive dye bath using ozonator for reuse. International Journal of Environmental Science and Technology, 4, 263–270.

    Article  CAS  Google Scholar 

  • Trotman, E. R. (1984). Dyeing and chemical technology of textile fibres. Edward.

    Google Scholar 

  • Wang, L., Ji, S., Wang, N., Zhang, R., Zhang, G., & Li, J. (2014). One-step self-assembly fabrication of amphiphilic hyperbranced polymer composite membrane from aqueous emulsion for dye desalination. Journal of Membrane Science, 452, 143–151.

    Article  CAS  Google Scholar 

  • Wang, H., Shen, Y., Shen, C., Wen, Y., & Li, H. (2012). Enhanced adsorption of dye on magnetic Fe3O4 via HCl-assisted sonication pretreatment. Desalination, 284, 122–127.

    Article  CAS  Google Scholar 

  • Wu, J., Ma, L., Chen, Y., Cheng, Y., Liu, Y., & Zha, X. (2016). Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: Removal and pathways. Water Research, 92, 140–148.

    Article  CAS  Google Scholar 

  • Xu, L., Du, L., Wang, C., & Xu, W. (2012). Nanofiltration coupled with electrolytic oxidation in treating simulated dye wastewater. Journal of Membrane Science, 409–410, 329–334.

    Article  CAS  Google Scholar 

  • Yu, S., Liu, M., Ma, M., Qi, M., Lü, Z., & Gao, C. (2010). Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. Journal of Membrane Science, 350, 83–91.

    Article  CAS  Google Scholar 

  • Yurtsever, A., Sahinkaya, E., Aktaș, Ö., Uçar, D., Çinar, Ö., & Wang, Z. (2015). Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater. Bioresource Technology, 192, 564–573.

    Article  CAS  Google Scholar 

  • Zhang, G., Li, X., Li, Y., Wu, T., Sun, D., & Lu, F. (2011). Removal of anionic dyes from aqueous solution by leaching solutions of white mud. Desalination, 274, 255–261.

    Article  CAS  Google Scholar 

  • Zheng, Y., Yao, G., Cheng, Q., Yu, S., Liu, M., & Gao, C. (2013). Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration. Desalination, 328, 42–50.

    Article  CAS  Google Scholar 

  • Zhong, P. S., Widjojo, N., Chung, T., Weber, M., & Maletzko, C. (2012). Positively charged nanofiltration (NF) membranes vis UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater. Journal of Membrane Science, 417–418, 52–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the School of Engineering of Deakin University, Australia for appointing her as a senior research associate and the Institute of Frontier Materials at Deakin University for providing access to nanosizer to carry out experiments on salt aggregation .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Shu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shu, L., Pannirselvam, M., Jegatheesan, V. (2019). Nanofiltration of Dye Bath Towards Zero Liquid Discharge: A Technical and Economic Evaluation. In: Pannirselvam, M., Shu, L., Griffin, G., Philip, L., Natarajan, A., Hussain, S. (eds) Water Scarcity and Ways to Reduce the Impact. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-319-75199-3_3

Download citation

Publish with us

Policies and ethics