Texture Classification of Phases of Ti-6Al-4V Titanium Alloy Using Fractal Descriptors

  • André R. Backes
  • Jarbas Joaci de Mesquita Sá Junior
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

Traditionally, the evaluation of metal microstructures and their physical properties is a subject of study in Metallography. Through microscopy, we obtain images of the microstructures of the material evaluated, while a human expert performs its analysis. However, texture is an important image descriptor as it is directly related to the physical properties of the surface of the object. Thus, in this paper, we propose to use texture analysis methods to automatically classify metal microstructures, more specifically, the phases of a Titanium alloy, Ti-6Al-4V. We performed texture analysis using the Bouligand-Minkowski fractal dimension method, which enables us to describe a texture image in terms of its irregularity. Experiments were performed using 3900 texture samples of 2 different phases of the titanium alloy. We used LDA (Linear Discriminant Analysis) to evaluate computed texture descriptors. The results indicated that fractal dimension is a feasibility tool for the evaluation of the microstructures present in the metal samples.

Keywords

Ti-6Al-4V Texture Complexity analysis Automated visual inspection Titanium 

Notes

Acknowledgments

André R. Backes gratefully acknowledges the financial support of CNPq (National Council for Scientific and Technological Development, Brazil) (Grant #302416/2015-3), FAPEMIG (Foundation to the Support of Research in Minas Gerais) (Grant #APQ-03437-15) and PROPP-UFU. Jarbas Joaci de Mesquita Sá Junior acknowledges the financial support of CNPq (Grant 453835/2017-1). We also thank the authors of the paper [6] for kindly providing the titanium alloy images used in this paper.

References

  1. 1.
    Xie, X.H.: A review of recent advances in surface defect detection using texture analysis techniques. Electron. Lett. Comput. Vis. Image Anal. 7(3), 1–22 (2008)Google Scholar
  2. 2.
    Fernández, A., Álvarez, M.X., Bianconi, F.: Texture description through histograms of equivalent patterns. J. Math. Imaging Vis. 45(1), 76–102 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Backes, A.R., Casanova, D., Bruno, O.M.: Color texture analysis based on fractal descriptors. Pattern Recogn. 45(5), 1984–1992 (2012)CrossRefGoogle Scholar
  4. 4.
    Tricot, C.: Curves and Fractal Dimension. Springer, Heidelberg (1995)CrossRefMATHGoogle Scholar
  5. 5.
    Mandelbrot, B.: The Fractal Geometry of Nature. Freeman & Co., New York (2000)Google Scholar
  6. 6.
    Ducato, A., Fratini, L., La Cascia, M., Mazzola, G.: An automated visual inspection system for the classification of the phases of Ti-6Al-4V titanium alloy. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013. LNCS, vol. 8048, pp. 362–369. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40246-3_45 CrossRefGoogle Scholar
  7. 7.
    Malamas, E.N., Petrakis, E.G.M., Zervakis, M., Petit, L., Legat, J.D.: A survey on industrial vision systems applications and tools image and vision computing. Image Vis. Comput. 21, 171–188 (2003)CrossRefGoogle Scholar
  8. 8.
    Topalova, I., Mihailov, A., Tzokev, A.: Automated classification of heat resistant steel structures based on neural networks. In: IEEE 25th Convention of Electrical and Electronics Engineers in Israel 2008, IEEEI 2008, pp. 437–440 (2008)Google Scholar
  9. 9.
    Wejrzanowski, T., Spychalski, W.L., Rózniatowski, K., Kurzydlowski, K.J.: Image based analysis of complex microstructures of engineering materials. Appl. Math. Comput. Sci. 18(1), 33–39 (2008)Google Scholar
  10. 10.
    Bruschi, S., Poggio, S., Quadrini, F., Tata, M.: Workability of Ti-6Al-4V alloy at high temperatures and strain rates. Mater. Lett. 58(2728), 3622–3629 (2004)CrossRefGoogle Scholar
  11. 11.
    Bruno, O.M., de Oliveira Plotze, R., Falvo, M., de Castro, M.: Fractal dimension applied to plant identification. Inf. Sci. 178, 2722–2733 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Plotze, R.O., Falvo, M., Pádua, J.G., Bernacci, L.C., Vieira, M.L.C., Oliveira, G.C.X., Bruno, O.M.: Leaf shape analysis using the multiscale minkowski fractal dimension, a new morphometric method: a study with passiflora (passifloraceae). Can. J. Bot. 83(3), 287–301 (2005)CrossRefGoogle Scholar
  13. 13.
    Backes, A.R., Eler, D.M., Minghim, R., Bruno, O.M.: Characterizing 3D shapes using fractal dimension. In: Bloch, I., Cesar, R.M. (eds.) CIARP 2010. LNCS, vol. 6419, pp. 14–21. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16687-7_7 CrossRefGoogle Scholar
  14. 14.
    Wu, J.M., Kuo, C.M., Chen, C.J.: Dose verification in intensity modulation radiation therapy: a fractal dimension characteristics study (2013)Google Scholar
  15. 15.
    Li, J., Sun, C., Du, Q.: A new box-counting method for estimation of image fractal dimension. In: International Conference on Image Processing, pp. 3029–3032 (2006)Google Scholar
  16. 16.
    Schroeder, M.: Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise. W. H. Freeman, New York (1996)MATHGoogle Scholar
  17. 17.
    Weszka, J.S., Dyer, C.R., Rosenfeld, A.: A comparative study of texture measures for terrain classification. IEEE Trans. Syst. Man Cybern. SMC 6(4), 269–285 (1976)CrossRefMATHGoogle Scholar
  18. 18.
    Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)CrossRefGoogle Scholar
  19. 19.
    Chang, T., Kuo, C.J.: Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Process. 2(4), 429–441 (1993)CrossRefGoogle Scholar
  20. 20.
    Backes, A.R., Gonçalves, W.N., Martinez, A.S., Bruno, O.M.: Texture analysis and classification using deterministic tourist walk. Pattern Recogn. 43(3), 685–694 (2010)CrossRefMATHGoogle Scholar
  21. 21.
    Allain, C., Cloitre, M.: Characterizing the lacunarity of random and deterministic fractal sets. Phys. Rev. A 44(6), 3552–3558 (1991)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Du, G., Yeo, T.S.: A novel lacunarity estimation method applied to SAR image segmentation. IEEE Trans. Geosci. Remote Sens. 40(12), 2687–2691 (2002)CrossRefGoogle Scholar
  23. 23.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, Boston (1990)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • André R. Backes
    • 1
  • Jarbas Joaci de Mesquita Sá Junior
    • 2
  1. 1.Faculdade de ComputaçãoUniversidade Federal de UberlândiaUberlândiaBrazil
  2. 2.Curso de Engenharia de Computação Campus de SobralUniversidade Federal do CearáSobralBrazil

Personalised recommendations