Advertisement

Ultrasonic Backscatter Signal Processing Technique for the Characterization of Animal Lymph Node

  • Julian A. Villamarín
  • Daniela A. Montilla
  • Olga M. Potosi
  • Luis F. Londoño
  • Fabian G. Muñoz
  • Edgar W. Gutierrez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

Quantitative ultrasonic characterization of biological soft tissues has become in recent years an essential tool in the non-invasive-non-destructive assessment of physical properties of the microstructure of tissues, due to the potential for estimating acoustic parameters associated to density characteristics, distribution and heterogeneity of histological samples, as well as making the construction of improved quantitative images that support processes of clinical diagnosis. This paper presents the implementation of computational methods based on spectral analysis techniques for the construction of parametric ultrasonic images of animal suprascapular lymph node, which is an important tissue for the analysis of animal health risk or animal health. The computational algorithms were implemented based on the estimation of the acoustic attenuation coefficient dependent of the frequency and integrated backscatter coefficient (IBC). These computational procedures automatically processed 400 ultrasonic echoes acquired in a region of interest of 4 cm2 for each sample of lymph node, which it was exposed to an incident ultrasonic field of 2.25 MHz with bandwidth of 1 MHz @ −3 dB. The results allowed parametric identification of nodule structures as germinal nodules, which are hardly identified in conventional qualitative ultrasound images. Finally ultrasonic parametric characterization of biological study samples provides potential quantitative indicators, which are so much accurate in the estimation of histonormality.

Keywords

Backscattering Lymph node Ultrasound 

References

  1. 1.
    Miura, K., Nasu, H., Yamamoto, S.: Scanning acoustic microscopy for characterization of neoplastic and inflammatory lesions of lymph nodes. Sci. Reports 3, 1–10 (2013)Google Scholar
  2. 2.
    Abdel, E., Abu, M., Mohammed, A.: The utility of multi-detector CT in detection and characterization of mesenteric lymphadenopathy with histopathological confirmation (2016)Google Scholar
  3. 3.
    Chemat, F., Huma, Z., Khan, M.: Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason. Sonoche. 18, 813–835 (2011)CrossRefGoogle Scholar
  4. 4.
    Engels, D.: The control of neglected zoonotic diseases: zoonoses – prevention and control. World Health Organization, pp. 1–48 (2015)Google Scholar
  5. 5.
    Sedano, E.; Neira, C.: Calidad y Control de Calidad en el Laboratorio de Procedimientos Histológicos del Departamento de Patología 59 (1998). ISSN 1025-5583Google Scholar
  6. 6.
    Kiernan, J.A.: Histological and Histochemical Methods: Theory and Practice, 3rd edn. Arnold Publisher, London (2002)Google Scholar
  7. 7.
    Guzmán, X., Ramírez, P., López, S.: Manual de procedimientos estándares para el análisis histológico e histopatológico en organismos acuáticos. Instituto Nacional de Ecología INECC, pp. 1–22 (2009)Google Scholar
  8. 8.
    Badía, M., Ruiz, E., González, C.A.: Técnicas en Histología y Biología Celular. Elsevier Masson, Madrid (2009)Google Scholar
  9. 9.
    Ghoshai, G., Luchies, A.C., Blue, J.P., Oelze, M.L.: Temperature dependent ultrasonic characterization of biological media. J. Acoust. Soc. 43, 2203–2211 (2011)CrossRefGoogle Scholar
  10. 10.
    Cullinane, M., Reid, G., Dittrich, R., Kaposzta, Z., Babikian, V., Droste, D., Grossett, D.: Quantitative ultrasound spectroscopic imaging for characterization of disease extent in prostate cancer patients. Trans. Oncol. 8, 25–34 (2014)Google Scholar
  11. 11.
    Oliveira, L., Maia, J., Gamba, H., Gehewht, P., Pereira, W.: Image quality evaluation of B mode ultrasound equipament. Revista Brasileira de Engenharia Bioméd. 26(1), 11–24 (2010)CrossRefGoogle Scholar
  12. 12.
    Herd, T., Hall, T., Jingfeng, J., Zagzebskib, J.: Improving the statistics of quantitative ultrasound techniques with deformation compounding: an experimental study. Ultrasound Med. Biol. 37(12), 2066–2074 (2011)CrossRefGoogle Scholar
  13. 13.
    Mamou, J., Oelze, M.: Quantitative Ultrasound in Soft Tissues. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-94-007-6952-6 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Julian A. Villamarín
    • 1
  • Daniela A. Montilla
    • 2
  • Olga M. Potosi
    • 1
  • Luis F. Londoño
    • 3
  • Fabian G. Muñoz
    • 1
  • Edgar W. Gutierrez
    • 1
  1. 1.Antonio Nariño UniversityPopayánColombia
  2. 2.Valparaiso UniversityValparaisoChile
  3. 3.Polytechnique Jaime Isaza CadavidMedellínColombia

Personalised recommendations