Skeleton Pruning Based on Elongation and Size of Object’s Limbs and Boundary’s Convexities

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

We present a new pruning method able to remove peripheral branches of the skeleton of a 2D object without altering more significant branches. Pruning criteria take into account elongation and size of the object’s parts associated with skeleton branches. Only peripheral branches associated with scarcely significant object’s limbs and boundary’s convexities are removed, so that the object can be recovered satisfactorily starting from the pruned skeleton. Since by removing peripheral branches, new peripheral branches can be created, pruning is iterated until the skeleton structure becomes stable. The algorithm does not require fine tuning of the parameters and the obtained results are satisfactory.

Keywords

Shape representation Shape analysis Skeleton Pruning 

References

  1. 1.
    Siddiqi, K., Pizer, S.M. (eds.): Medial Representations: Mathematics, Algorithms and Applications. Springer, Berlin (2008).  https://doi.org/10.1007/978-1-4020-8658-8 MATHGoogle Scholar
  2. 2.
    Serino, L., Sanniti di Baja, G.: Selecting anchor points for 2D skeletonization. In: Kamel, M., Campilho, A. (eds.) ICIAR 2011. LNCS, vol. 6753, pp. 344–353. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21593-3_35 CrossRefGoogle Scholar
  3. 3.
    Postolski, M., Couprie, M., Janaszewski, M.: Scale filtered Euclidean medial axis and its hierarchy. Comput. Vis. Image Underst. 129, 89–102 (2014)CrossRefMATHGoogle Scholar
  4. 4.
    Shaked, D., Bruckstein, A.M.: Pruning medial axes. Comput. Vis. Image Underst. 69(2), 156–169 (1998)CrossRefGoogle Scholar
  5. 5.
    Sanniti di Baja, G.: Well-shaped, stable and reversible skeletons from the (3, 4)-distance transform. VCIR 5, 107–115 (1994)Google Scholar
  6. 6.
    Bai, X., Latecki, L.J., Liu, W.-Y.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. PAMI 29(3), 449–462 (2007)CrossRefGoogle Scholar
  7. 7.
    Shen, W., Bai, X., Hu, R., Wang, H., Latecki, L.J.: Skeleton growing and pruning with bending potential ratio. Pattern Recogn. 44, 196–209 (2011)CrossRefGoogle Scholar
  8. 8.
    Frucci, M., Sanniti di Baja, G., Arcelli, C., Cordella, L.P.: On the strategy to follow for skeleton pruning. In: De Marsico, M., Fred, A. (eds.) ICPRAM 2013, pp. 263–266. SCITEPRESS, Lisboa (2013)Google Scholar
  9. 9.
    Serino, L., Sanniti di Baja, G.: A new strategy for skeleton pruning. Pattern Recogn. Lett. 76, 41–48 (2016)CrossRefGoogle Scholar
  10. 10.
    Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph. Image Process. 34(3), 344–371 (1986)CrossRefGoogle Scholar
  11. 11.
    Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. CGIP 1, 244–256 (1972)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for High Performance Computing and NetworkingCNRNaplesItaly

Personalised recommendations