Advertisement

Convolutional Network for EEG-Based Biometric

  • Thiago Schons
  • Gladston J. P. Moreira
  • Pedro H. L. Silva
  • Vitor N. Coelho
  • Eduardo J. S. Luz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

The global expansion of biometric systems promotes the emergence of new and more robust biometric modalities. In that context, electroencephalogram (EEG) based biometric interest has been growing in recent years. In this study, a novel approach for EEG representation, based on deep learning, is proposed. The method was evaluated on a database containing 109 subjects, and all 64 EEG channels were used as input to a Deep Convolution Neural Network. Data augmentation techniques are explored to train the deep network and results showed that the method is a promising path to represent brain signals, overcoming baseline methods published in the literature.

Notes

Acknowledgements

The authors thank UFOP and funding Brazilian agencies CNPq, Fapemig and CAPES. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research.

References

  1. 1.
    Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011). http://dl.acm.org/citation.cfm?id=1953048.2078186 MATHGoogle Scholar
  2. 2.
    Fraschini, M., Hillebrand, A., Demuru, M., Didaci, L., Marcialis, G.L.: An EEG-based biometric system using eigenvector centrality in resting state brain networks. IEEE Signal Process. Lett. 22(6), 666–670 (2015)CrossRefGoogle Scholar
  3. 3.
    Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)CrossRefGoogle Scholar
  4. 4.
    Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Cir. Sys. Video Technol. 14(1), 4–20 (2004)CrossRefGoogle Scholar
  5. 5.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, pp. 1097–1105. Curran Associates, Inc., Red Hook (2012). http://dl.acm.org/citation.cfm?id=2999134.2999257
  6. 6.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
  7. 7.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  8. 8.
    Poulos, M., Rangoussi, M., Chrissikopoulos, V., Evangelou, A.: Person identification based on parametric processing of the EEG. In: The 6th IEEE International Conference on Electronics, Circuits and Systems, Proceedings of ICECS 1999, vol. 1, pp. 283–286 (1999)Google Scholar
  9. 9.
    Reitermanov, Z.: Data splitting. In: Proceedings of Contributed Papers, WDS 2010, pp. 31–36 (2010)Google Scholar
  10. 10.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556
  11. 11.
    Vedaldi, A., Lenc, K.: Matconvnet - convolutional neural networks for MATLAB. In: Proceeding of the ACM International Conference on Multimedia (2015)Google Scholar
  12. 12.
    Yang, S., Deravi, F., Hoque, S.: Task sensitivity in EEG biometric recognition. Pattern Anal. Appl., 1–13 (2016)Google Scholar
  13. 13.
    Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10590-1_53 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computing DepartmentUniversidade Federal de Ouro PretoOuro PretoBrazil
  2. 2.Department of Computer ScienceUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations