Exploring Image Bit Planes for Video Shot Boundary Detection

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

The wide availability of digital content and the advances in multimedia technology have leveraged the development of efficient mechanisms for storing, indexing, transmitting, retrieving and visualizing video data. A challenging task is to automatically construct a compact representation of video sequences to help users comprehend the most relevant information present in their content. In this work, we develop and evaluate a novel method for detecting abrupt transitions based on bit planes extracted from the video frames. Experiments are conducted on two public datasets to demonstrate the effectiveness of the proposed method. Results are compared against other approaches of the literature.

Keywords

Bit planes Cut detection Video shot boundary Video analysis 

Notes

Acknowledgments

The authors are thankful to São Paulo Research Foundation (grant FAPESP #2014/12236-1) and Brazilian Council for Scientific and Technological Development (grant CNPq #305169/2015-7 and scholarship #141647/2017-5) for their financial support.

References

  1. 1.
    Almeida, J., Leite, N.J., da S. Torres, R.: Rapid cut detection on compressed video. In: San Martin, C., Kim, S.-W. (eds.) CIARP 2011. LNCS, vol. 7042, pp. 71–78. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25085-9_8 CrossRefGoogle Scholar
  2. 2.
    Apostolidis, E., Mezaris, V.: Fast shot segmentation combining global and local visual descriptors. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6583–6587 (2014)Google Scholar
  3. 3.
    Birinci, M., Kiranyaz, S.: A perceptual scheme for fully automatic video shot boundary detection. Signal Process.: Image Commun. 29(3), 410–423 (2014)Google Scholar
  4. 4.
    Cirne, M.V.M., Pedrini, H.: VISCOM: a robust video summarization approach using color co-occurrence matrices. Multimed. Tools Appl. 77(1), 857–875 (2018). https://link.springer.com/article/10.1007%2Fs11042-016-4300-7 CrossRefGoogle Scholar
  5. 5.
    Guimarães, S., Patrocínio, Z., Paula, H., Silva, H.: A new dissimilarity measure for cut detection using bipartite graph matching. Int. J. Semant. Comput. 03(02), 155–181 (2009)CrossRefGoogle Scholar
  6. 6.
    Huang, T.S.: Image Sequence Analysis, vol. 5. Springer Science & Business Media, Heidelberg (1981).  https://doi.org/10.1007/978-3-642-87037-8 MATHGoogle Scholar
  7. 7.
    Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill Inc., New York (1995)Google Scholar
  8. 8.
    Jiang, X., Sun, T., Liu, J., Chao, J., Zhang, W.: An adaptive video shot segmentation scheme based on dual-detection model. Neurocomputing 116, 102–111 (2013)CrossRefGoogle Scholar
  9. 9.
    Koprinska, I., Carrato, S.: Temporal video segmentation: a survey. Signal Process. Image Commun. 16(5), 477–500 (2001)CrossRefGoogle Scholar
  10. 10.
    Ngan, K.N., Li, H.: Video Segmentation and Its Applications. Springer Science & Business Media, New York (2011).  https://doi.org/10.1007/978-1-4419-9482-0 CrossRefGoogle Scholar
  11. 11.
    Pal, G., Acharjee, S., Rudrapaul, D., Ashour, A.S., Dey, N.: Video segmentation using minimum ratio similarity measurement. Int. J. Image Min. 1(1), 87–110 (2015)CrossRefGoogle Scholar
  12. 12.
    Piramanayagam, S., Saber, E., Cahill, N.D., Messinger, D.: Shot boundary detection and label propagation for spatio-temporal video segmentation. In: Proceedings of SPIE, vol. 9405, pp. 94050D–94050D-7 (2015)Google Scholar
  13. 13.
    Sousa e Santos, A.C., Pedrini, H.: Adaptive video transition detection based on multiscale structural dissimilarity. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10073, pp. 181–190. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50832-0_18 Google Scholar
  14. 14.
    Sousa e Santos, A.C., Pedrini, H.: Video temporal segmentation based on color histograms and cross-correlation. In: Beltrán-Castañón, C., Nyström, I., Famili, F. (eds.) CIARP 2016. LNCS, vol. 10125, pp. 225–232. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-52277-7_28 CrossRefGoogle Scholar
  15. 15.
    Tekalp, A.M.: Digital Video Processing, 2nd edn. Prentice Hall Press, Upper Saddle River (2015)Google Scholar
  16. 16.
    Tippaya, S., Sitjongsataporn, S., Tan, T., Chamnongthai, K., Khan, M.: Video shot boundary detection based on candidate segment selection and transition pattern analysis. In: IEEE International Conference on Digital Signal Processing, pp. 1025–1029. IEEE (2015)Google Scholar
  17. 17.
    TRECVID: TRECVID Data Availability (2017). http://trecvid.nist.gov/trecvid.data.html
  18. 18.
    Veltkamp, R., Burkhardt, H., Kriegel, H.P.: State-of-the-Art in Content-Based Image and Video Retrieval, vol. 22. Springer Science & Business Media, Heidelberg (2013).  https://doi.org/10.1007/978-94-015-9664-0 MATHGoogle Scholar
  19. 19.
    Verma, M., Raman, B.: A hierarchical shot boundary detection algorithm using global and local features. In: Raman, B., Kumar, S., Roy, P.P., Sen, D. (eds.) Proceedings of International Conference on Computer Vision and Image Processing. AISC, vol. 460, pp. 389–397. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-10-2107-7_35 CrossRefGoogle Scholar
  20. 20.
    Whitehead, A., Bose, P., Laganiere, R.: Feature based cut detection with automatic threshold selection. In: Enser, P., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 410–418. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27814-6_49 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations