Advertisement

Ensembles of Multiobjective-Based Classifiers for Detection of Epileptic Seizures

  • Fernando S. Beserra
  • Marcos M. Raimundo
  • Fernando J. Von Zuben
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

This paper proposes multiobjective-based classifiers to detect epileptic seizures using ensemble approaches, transfer-learning methods, and three alternative feature extraction techniques. Two aspects of the problem were investigated: (1) the relative merit of distinct proposals to synthesize an ensemble of classifiers, considering all the three feature extraction techniques; (2) the potential of an ensemble composed of transfer-learned classifiers. The blend approaches with the best performance detected all test seizures, with a high proportion of correctly detected samples inside the seizure interval and high proportion of time intervals correctly classified as non-seizures.

Keywords

Ensemble of classifiers Transfer learning Multiobjective optimization Epilepsy 

Notes

Acknowledgments

This research was supported by FAPESP, processes 16/19080-2 and 14/13533-0, and by CNPq, process 309115/2014-0.

References

  1. 1.
    Chandra, A., Yao, X.: DIVACE: diverse and accurate ensemble learning algorithm. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 619–625. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28651-6_91 CrossRefGoogle Scholar
  2. 2.
    Cohon, J.L.: Multiobjective Programming and Planning. Academic Press, New York (1978)MATHGoogle Scholar
  3. 3.
    Dhulekar, N., Nambirajan, S., Oztan, B., Yener, B.: Seizure prediction by graph mining, transfer learning, and transformation learning. In: Perner, P. (ed.) MLDM 2015. LNCS (LNAI), vol. 9166, pp. 32–52. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21024-7_3 CrossRefGoogle Scholar
  4. 4.
    Fernández Caballero, J.C., Martinez, F.J., Hervas, C., Gutierrez, P.A.: Sensitivity versus accuracy in multiclass problems using memetic Pareto evolutionary neural networks. IEEE Trans. Neural Netw. 21(5), 750–770 (2010)CrossRefGoogle Scholar
  5. 5.
    Giannakakis, G., Sakkalis, V., Pediaditis, M., Tsiknakis, M.: Methods for seizure detection and prediction: an overview. In: Sakkalis, V. (ed.) Modern Electroencephalographic Assessment Techniques. N, vol. 91, pp. 131–157. Springer, New York (2014).  https://doi.org/10.1007/7657_2014_68 Google Scholar
  6. 6.
    Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C., Stanley, H.E.: Physiobank, physiotoolkit, and physionet. Circulation 101(23), e215–e220 (2000)CrossRefGoogle Scholar
  7. 7.
    Kramer, M.A., Kolaczyk, E.D., Kirsch, H.E.: Emergent network topology at seizure onset in humans. Epilepsy Res. 79, 173–186 (2008)CrossRefGoogle Scholar
  8. 8.
    Latka, M., Was, Z., Kozik, A., West, B.J.: Wavelet analysis of epileptic spikes. Phys. Rev. E 67, 052902 (2003)CrossRefGoogle Scholar
  9. 9.
    de Miranda, P.B.C., Prudencio, R.B.C., de Carvalho, A.C.P.L.F., Soares, C.: Combining a multi-objective optimization approach with meta-learning for SVM parameter selection. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2909–2914 (2012)Google Scholar
  10. 10.
    Mirowski, P., Madhavan, D., LeCun, Y., Kuzniecky, R.: Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol. 120(11), 1927–1940 (2009)CrossRefGoogle Scholar
  11. 11.
    Shoeb, A.H.: Application of machine learning to epileptic seizure onset detection and treatment. Ph.D. thesis, Harvard-MIT Division of Health Sciences and Technology (2009)Google Scholar
  12. 12.
    Shoeb, A.H., Guttag, J.V.: Application of machine learning to epileptic seizure detection. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 975–982 (2010)Google Scholar
  13. 13.
    Song, Y., Crowcroft, J., Zhang, J.: Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J. Neurosci. Methods 210, 132–146 (2012)CrossRefGoogle Scholar
  14. 14.
    Subasi, A., Kevric, J., Abdullah Canbaz, M.: Epileptic seizure detection using hybrid machine learning methods. Neural Comput. Appl., 1–9 (2017).  https://doi.org/10.1007/s00521-017-3003-y
  15. 15.
    Swami, P., Gandhi, T.K., Panigrahi, B.K., Bhatia, M., Santhosh, J., Anand, S.: A comparative account of modelling seizure detection system using wavelet techniques. Int. J. Syst. Sci. Oper. Logist. 4(1), 41–52 (2017)Google Scholar
  16. 16.
    Van Esbroeck, A., Smith, L., Syed, Z., Singh, S., Karam, Z.: Multi-task seizure detection: addressing intra-patient variation in seizure morphologies. Mach. Learn. 102(3), 309–321 (2016)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yuan, Q., Zhou, W., Liu, Y., Wang, J.: Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav. 24(4), 415–421 (2012)CrossRefGoogle Scholar
  18. 18.
    Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms, 1st edn. Chapman and Hall/CRC, London (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fernando S. Beserra
    • 1
  • Marcos M. Raimundo
    • 1
  • Fernando J. Von Zuben
    • 1
  1. 1.LBiC/DCA/FEEC - University of CampinasCampinasBrazil

Personalised recommendations