Semantic Segmentation of Color Eye Images for Improving Iris Segmentation

  • Dailé Osorio-Roig
  • Annette Morales-González
  • Eduardo Garea-Llano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)


Iris segmentation under visible spectrum (VIS) is a topic that has been gaining attention in many researches in the last years, due to an increasing interest in iris recognition at-a-distance and in non-cooperative environments such as: blur, off-axis, occlusions, specular reflections among others. In this paper, we propose a new approach to detect the iris region on eye images acquired under VIS. We introduce the semantic information of different classes of an eye image (such as sclera, pupil, iris, eyebrows among others) in order to segment the iris region. Experimental results on UBIRIS v2 database show that the semantic segmentation improves the iris segmentation by reducing the intra-class variability, especially for the non-iris classes.


  1. 1.
    Jillela, R.R., Ross, A.: Segmenting iris images in the visible spectrum with applications in mobile biometrics. Pattern Recogn. Lett. 57, 4–16 (2015)CrossRefGoogle Scholar
  2. 2.
    Proença, H., Alexandre, L.A.: The NICE.I: noisy iris challenge evaluation-part I. In: First IEEE International Conference on Biometrics: Theory, Applications, and Systems, BTAS 2007. IEEE, pp. 1–4 (2007)Google Scholar
  3. 3.
    Proenca, H., Alexandre, L.A.: Toward noncooperative iris recognition: a classification approach using multiple signatures. IEEE Trans. Pattern Anal. Mach. Intell. 29(4) (2007)Google Scholar
  4. 4.
    Rathgeb, C., Uhl, A., Wild, P.: Iris Biometrics: From Segmentation to Template Security, vol. 59. Springer Science & Business Media, New York (2012). Google Scholar
  5. 5.
    Jeong, D.S., Hwang, J.W., Kang, B.J., Park, K.R., Won, C.S., Park, D.K., Kim, J.: A new iris segmentation method for non-ideal iris images. Image Vis. Comput. 28(2), 254–260 (2010)CrossRefGoogle Scholar
  6. 6.
    Abdullah, M.A., Dlay, S.S., Woo, W.L., Chambers, J.A.: Robust iris segmentation method based on a new active contour force with a noncircular normalization. IEEE SMC (2016)Google Scholar
  7. 7.
    Chen, Y., Adjouadi, M., Han, C., Wang, J., Barreto, A., Rishe, N., Andrian, J.: A highly accurate and computationally efficient approach for unconstrained iris segmentation. Image Vis. Comput. 28(2), 261–269 (2010)CrossRefGoogle Scholar
  8. 8.
    Proenca, H.: Iris recognition: on the segmentation of degraded images acquired in the visible wavelength. IEEE Trans. PAMI 32(8), 1502–1516 (2010)CrossRefGoogle Scholar
  9. 9.
    Morales-González, A., García-Reyes, E., Sucar, L.E.: Improving image segmentation for boosting image annotation with irregular pyramids. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8258, pp. 399–406. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  10. 10.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004)CrossRefGoogle Scholar
  11. 11.
    Proenca, H., Filipe, S., Santos, R., Oliveira, J., Alexandre, L.A.: The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans. (PAMI) 32(8), 1529–1535 (2010)Google Scholar
  12. 12.
    Hoiem, D., Efros, A.A., Hebert, M.: Recovering surface layout from an image. IJCV 75(1), 151–172 (2007)CrossRefMATHGoogle Scholar
  13. 13.
    Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric and semantically consistent regions. In: ICCV, pp. 1–8. IEEE (2009)Google Scholar
  14. 14.
    Liu, N., Li, H., Zhang, M., Liu, J., Sun, Z., Tan, T.: Accurate iris segmentation in non-cooperative environments using fully convolutional networks. In: ICB, pp. 1–8, June 2016Google Scholar
  15. 15.
    Tan, C.W., Kumar, A.: Towards online iris and periocular recognition under relaxed imaging constraints. IEEE Trans. Image Process. 22(10), 3751–3765 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Tan, C.W., Kumar, A.: Unified framework for automated iris segmentation using distantly acquired face images. IEEE Trans. Image Process. 21(9), 4068–4079 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Chai, T.Y., Goi, B.M., Tay, Y.H., Chin, W.K., Lai, Y.L.: Local Chan-Vese segmentation for non-ideal visible wavelength iris images. In: TAAI, pp. 506–511. IEEE (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Technologies Application Center (CENATAV)HavanaCuba

Personalised recommendations