Self-organizing Maps for Motor Tasks Recognition from Electrical Brain Signals

  • Alvaro D. Orjuela-Cañón
  • Osvaldo Renteria-Meza
  • Luis G. Hernández
  • Andrés F. Ruíz-Olaya
  • Alexander Cerquera
  • Javier M. Antelis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

Recently, there has been a relevant progress and interest for brain–computer interface (BCI) technology as a potential channel of communication and control for the motor disabled, including post-stroke and spinal cord injury patients. Different mental tasks, including motor imagery, generate changes in the electro-physiological signals of the brain, which could be registered in a non-invasive way using electroencephalography (EEG). The success of the mental motor imagery classification depends on the choice of features used to characterize the raw EEG signals, and of the adequate classifier. As a novel alternative to recognize motor imagery tasks for EEG-based BCI, this work proposes the use of self-organized maps (SOM) for the classification stage. To do so, it was carried out an experiment aiming to predict three-class motor tasks (rest versus left motor imagery versus right motor imagery) utilizing spectral power-based features of recorded EEG signals. Three different pattern recognition algorithms were applied, supervised SOM, SOM+k-means and k-means, to classify the data offline. Best results were obtained with the SOM trained in a supervised way, where the mean of the performance was 77% with a maximum of 85% for all classes. Results indicate potential application for the development of BCIs systems.

Keywords

Electroencephalogram Brain-computer interfaces Motor imagery Classification Self-organized maps 

Notes

Acknowledgments

The authors thank to Universidad Antonio Nariño under project 2016207 and publication PI/UAN-2017-611GIBIO for the support in this work. J.M. Antelis thanks the financial support of CONACYT through grants 268958 and PN2015-873.

References

  1. 1.
    Lebedev, M.A., Nicolelis, M.A.: Brain-machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006)CrossRefGoogle Scholar
  2. 2.
    Allison, B.Z., Dunne, S., Leeb, R., Millan, J.D.R., Nijholt, A.: Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World Applications. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29746-5 Google Scholar
  3. 3.
    Vega, R., Sajed, T., Mathewson, K.W., Khare, K., Pilarski, P.M., Greiner, R., Sánchez-Ante, G., Antelis, J.M.: Assessment of feature selection and classification methods for recognizing motor imagery tasks from electroencephalographic signals. Artif. Intell. Res. 6(1), 37 (2017)Google Scholar
  4. 4.
    Kohonen, T.: Self-organization and Associative Memory, vol. 8. Springer Science & Business Media, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-88163-3 MATHGoogle Scholar
  5. 5.
    Carino-Escobar, R.I., Cantillo-Negrete, J., Gutierrez-Martinez, J.: Decodificación de imaginación motora en la señal de electroencefalografía mediante mapas auto-organizados. Revista del Centro de Investigación de la Universidad La Salle 12, 107–125 (2016)Google Scholar
  6. 6.
    Pfurtscheller, G., Brunner, C., Schlögl, A., Lopes da Silva, F.H.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31(1), 153–159 (2006)CrossRefGoogle Scholar
  7. 7.
    Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller, G., Vaughan, T.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  8. 8.
    Haykin, S.S., Haykin, S.S., Haykin, S.S., Haykin, S.S.: Neural Networks and Learning Machines, vol. 3. Pearson, Upper Saddle River (2009)MATHGoogle Scholar
  9. 9.
    Agresti, A., Kateri, M.: Categorical Data Analysis. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-04898-2 CrossRefMATHGoogle Scholar
  10. 10.
    Hartigan, J.A., Hartigan, J.: Clustering Algorithms, vol. 209. Wiley, New York (1975)MATHGoogle Scholar
  11. 11.
    Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI, vol. 14, Stanford, CA, pp. 1137–1145 (1995)Google Scholar
  12. 12.
    Ojeda, L., Vega, R., Falcon, L.E., Sanchez-Ante, G., Sossa, H., Antelis, J.M.: Classification of hand movements from non-invasive brain signals using lattice neural networks with dendritic processing. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Sossa-Azuela, J.H., Olvera López, J.A., Famili, F. (eds.) MCPR 2015. LNCS, vol. 9116, pp. 23–32. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19264-2_3 CrossRefGoogle Scholar
  13. 13.
    Gudiño-Mendoza, B., Sanchez-Ante, G., Antelis, J.M.: Detecting the intention to move upper limbs from electroencephalographic brain signals. Comput. Math. Methods Med. 2016 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad Antonio NariñoBogota D.C.Colombia
  2. 2.Tecnologico de Monterrey, Campus GuadalajaraZapopanMexico

Personalised recommendations