Advertisement

Going Deeper on BioImages Classification: A Plant Leaf Dataset Case Study

  • Daniel H. A. Alves
  • Luís F. Galonetti
  • Claiton de Oliveira
  • Pedro H. Bugatti
  • Priscila T. M. Saito
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

In this paper, we present and evaluate the accuracy of a Deep Convolutional Neural Network (DCNN) architecture, with other traditional methods, to solve a bioimage classification problem. The main contributions of this work are the application of a DCNN architecture and the further comparison of different types of classification and feature extraction techniques applied to a plant leaf image dataset. Furthermore, we go deeper on the analysis of a cross-domain transfer learning approach using a state-of-the-art deep neural network called Inception-v3. Our results show that we manage to classify a subset of 53 species of leafs with a notable mean accuracy of \(98.2\%\).

Keywords

Deep learning Transfer learning Pattern recognition Image classification Bioimages 

Notes

Acknowledgment

This research was supported by grants from CNPq (#431668/2016-7 and #422811/2016-5), Fundação Araucária, FAPESP, SETI and UTFPR.

References

  1. 1.
    Joly, A., Bonnet, P., Goëau, H., Barbe, J., Selmi, S., Champ, J., Dufour-Kowalski, S., Affouard, A., Carré, J., Jean-François, M., Boujemaa, N., Barthélémy, D.: A look inside the Pl@ntNet experience. Multimed. Syst. 22(6), 751–766 (2016)CrossRefGoogle Scholar
  2. 2.
    Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook. Springer, Boston (2011).  https://doi.org/10.1007/978-0-387-85820-3_1 CrossRefGoogle Scholar
  3. 3.
    Phua, C., Lee, V., Smith, K., Gayler, R.: A comprehensive survey of data mining-based fraud detection research. arXiv preprint arXiv:1009.6119 (2010)
  4. 4.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)CrossRefGoogle Scholar
  6. 6.
    LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  7. 7.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)MATHGoogle Scholar
  8. 8.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  9. 9.
    Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)Google Scholar
  10. 10.
    Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: CVPR, pp. 512–519 (2014)Google Scholar
  11. 11.
    Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)CrossRefGoogle Scholar
  12. 12.
    Goëau, H., Bonnet, P., Joly, A., Yahiaoui, I., Barthélémy, D., Boujemaa, N., Molino, J.: The imageCLEF 2012 plant identification task. In: CLEF 2012: Conference and Labs of the Evaluation Forum, Rome, Italy, September 2012Google Scholar
  13. 13.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall Inc., Upper Saddle River (2006)Google Scholar
  14. 14.
    Huang, C.B., Liu, Q.: An orientation independent texture descriptor for image retrieval. In: ICCCAS, pp. 772–776 (2007)Google Scholar
  15. 15.
    Won, C.S., Park, D.K., Park, S.-J.: Efficient use of MPEG-7 edge histogram descriptor. ETRI J. 24(1), 23–30 (2002)CrossRefGoogle Scholar
  16. 16.
    Nixon, M.S., Aguado, A.S.: Feature Extraction & Image Processing for Computer Vision. Academic Press, Cambridge (2012)Google Scholar
  17. 17.
    Stehling, R.O., Nascimento, M.A., Falcão, A.X.: A compact and efficient image retrieval approach based on border/interior pixel classification. In: CIKM, pp. 102–109. ACM (2002)Google Scholar
  18. 18.
    Kasutani, E., Yamada, A.: The MPEG-7 color layout descriptor: a compact image feature description for high-speed image/video segment retrieval. In: ICIP, pp. 674–677. IEEE (2001)Google Scholar
  19. 19.
    Huang, J., Kumar, S.R., Mitra, M., Zhu, W.-J.: Spatial color indexing and applications. In: ICCV, pp. 602–607. IEEE (1998)Google Scholar
  20. 20.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefMATHGoogle Scholar
  21. 21.
    Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)CrossRefGoogle Scholar
  22. 22.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefMATHGoogle Scholar
  23. 23.
    Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 29(2), 103–130 (1997)CrossRefMATHGoogle Scholar
  24. 24.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, Amsterdam (2014)Google Scholar
  25. 25.
    Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised pattern classification based on optimum-path forest. Int. J. Imaging Syst. Technol. 19, 120–131 (2009)CrossRefGoogle Scholar
  26. 26.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)Google Scholar
  27. 27.
    Brilhador, A., Colonhezi, T.P., Bugatti, P.H., Lopes, F.M.: Combining texture and shape descriptors for bioimages classification: a case of study in imageCLEF dataset. In: CIARP, pp. 431–438 (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ComputingFederal University of Technology - ParanáCornélio ProcópioBrazil
  2. 2.Institute of ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations