Advertisement

Many-Objective Ensemble-Based Multilabel Classification

  • Marcos M. Raimundo
  • Fernando J. Von Zuben
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

This paper proposes a many-objective ensemble-based algorithm to explore the relations among the labels on multilabel classification problems. This proposal consists in two phases. In the first one, a many-objective optimization method generates a set of candidate components exploring the relations among the labels, and the second one uses a stacking method to aggregate the components for each label. By balancing or not the relevance of each label, two versions were conceived for the proposal. The balanced one presented a good performance for recall and F1 metrics, and the unbalanced one for 1-Hamming loss and precision metrics.

Keywords

Multilabel classification Many-objective optimization Multiobjective optimization Ensemble of classifiers Stacking 

Notes

Acknowledgments

This research was supported by grants from FAPESP, process #14/13533-0, and CNPq, process #309115/2014-0.

References

  1. 1.
    Caruana, R.: Multitask learning. Mach. Learn. 75(1), 41–75 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: MLeNN: a first approach to heuristic multilabel undersampling. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 1–9. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10840-7_1 Google Scholar
  3. 3.
    Cohon, J.L., Church, R.L., Sheer, D.P.: Generating multiobjective trade-offs: an algorithm for bicriterion problems. Water Resour. Res. 15(5), 1001–1010 (1979)CrossRefGoogle Scholar
  4. 4.
    Costa, N., Coelho, A.L.V.: Genetic and ranking-based selection of components for multilabel classifier ensembles. In: Proceedings of the 2011 11th International Conference on Hybrid Intelligent Systems, HIS 2011, pp. 311–317 (2011)Google Scholar
  5. 5.
    Dembczy, K.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th International Conference on Machine Learning, pp. 279–286 (2010)Google Scholar
  6. 6.
    Gonçalves, A.R., Von Zuben, F.J., Banerjee, A.: Multi-label structure learning with Ising model selection. In: Proceedings of 24th International Joint Conference on Artificial Intelligence, pp. 3525–3531 (2015)Google Scholar
  7. 7.
    Osojnik, A., Panov, P., Džeroski, S.: Multi-label classification via multi-target regression on data streams. In: Japkowicz, N., Matwin, S. (eds.) DS 2015. LNCS (LNAI), vol. 9356, pp. 170–185. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24282-8_15 CrossRefGoogle Scholar
  8. 8.
    Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)CrossRefGoogle Scholar
  9. 9.
    Raimundo, M.M., Von Zuben, F.J.: MONISE - many objective non-inferior set estimation, pp. 1–39 (2017). arXiv:1709.00797
  10. 10.
    Ramírez-Corona, M., Sucar, L.E., Morales, E.F.: Hierarchical multilabel classification based on path evaluation. Int. J. Approx. Reason. 68, 179–193 (2016)CrossRefMATHGoogle Scholar
  11. 11.
    Ramón Quevedo, J., Luaces, O., Bahamonde, A.: Multilabel classifiers with a probabilistic thresholding strategy. Pattern Recogn. 45(2), 876–883 (2012)MATHGoogle Scholar
  12. 12.
    Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: Proceedings - IEEE International Conference on Data Mining, ICDM, pp. 995–1000 (2008)Google Scholar
  13. 13.
    Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333–359 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010)CrossRefGoogle Scholar
  15. 15.
    Satapathy, S.C., Govardhan, A., Raju, K.S., Mandal, J.K.: Emerging ICT for Bridging the Future - Proceedings of the 49th Annual Convention of the Computer Society of India (CSI) Volume 2. Advances in Intelligent Systems and Computing, vol. 338, pp. 1–4. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-319-13731-5 Google Scholar
  16. 16.
    Shi, C., Kong, X., Yu, P.S., Wang, B.: Multi-label ensemble learning. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 223–239. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23808-6_15 CrossRefGoogle Scholar
  17. 17.
    Shi, C., Kong, X., Fu, D., Yu, P.S., Wu, B.: Multi-label classification based on multi-objective optimization. ACM Trans. Intell. Syst. Technol. 5(2), 1–22 (2014)CrossRefGoogle Scholar
  18. 18.
    Shi, C., Kong, X., Yu, P.S., Wang, B.: Multi-objective multi-label classification. In: Proceedings of the 12th SIAM International Conference on Data Mining, SDM 2012, pp. 355–366 (2012)Google Scholar
  19. 19.
    Tahir, M.A., Kittler, J., Bouridane, A.: Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recogn. Lett. 33(5), 513–523 (2012)CrossRefGoogle Scholar
  20. 20.
    Tang, L., Rajan, S., Narayanan, V.K.: Large scale multi-label classification via metalabeler. In: Proceedings of the 18th International Conference on World Wide Web, p. 211 (2009)Google Scholar
  21. 21.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)CrossRefGoogle Scholar
  22. 22.
    Yin, J., Tao, T., Xu, J.: A multi-label feature selection algorithm based on multi-objective optimization (2015)Google Scholar
  23. 23.
    Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LBiC/DCA/FEEC - University of CampinasCampinasBrazil

Personalised recommendations