Advertisement

Full-Quaternion Color Correction in Images for Person Re-identification

  • Reynolds León Guerra
  • Edel B. García Reyes
  • Francisco J. Silva Mata
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

Nowadays, video surveillance systems are very used to safeguard airport areas, train stations, public places, among others. Using these systems, the person re-identification is an automated task. However, there are many problems that affect the good performance of person re-identification algorithms. For example, illumination changes in the scenes is one of the essential problems. It increases the false colors on the person appearance. Moreover, in the extraction of low level features (color) there is a need to obtain reliable colors of the image or person appearance. To this end, we propose a new algorithm using full-quaternions for color image representation. The quaternionic trigonometry and the Quaternion Fast Fourier Transform are used to improve person image in the frequency domain. Finally, to see the transformed image, an adaptive gamma function is developed. Experiment results on two datasets (VIPeR and GRID) show consistent improvements over the state-of-the-art approaches.

Keywords

Full-quaternion Person image Color Fourier transforms 

References

  1. 1.
    Wu, Z.: Human Re-Identification. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-40991-7 CrossRefGoogle Scholar
  2. 2.
    Deng, X., Ma, B., Chang, H., Shan, S., Chen, X.: Deep second-order Siamese network for pedestrian re-identification. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10112, pp. 321–337. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54184-6_20 CrossRefGoogle Scholar
  3. 3.
    Wang, H., Gong, S., Xiang, T.: Highly efficient regression for scalable person re-identification. arXiv preprint arXiv:1612.01341 (2016)
  4. 4.
    Schumann, A., Gong, S., Schuchert, T.: Deep learning prototype domains for person re-identification. arXiv preprint arXiv:1610.05047 (2016)
  5. 5.
    de Carvalho Prates, R.F., Schwartz, W.R.: Appearance-based person re-identification by intra-camera discriminative models and rank aggregation. In: 2015 International Conference on Biometrics (ICB), pp. 65–72. IEEE (2015)Google Scholar
  6. 6.
    Ma, B., Li, Q., Chang, H.: Gaussian descriptor based on local features for person re-identification. In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014. LNCS, vol. 9010, pp. 505–518. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16634-6_37 Google Scholar
  7. 7.
    Kviatkovsky, I., Adam, A., Rivlin, E.: Color invariants for person reidentification. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1622–1634 (2013)CrossRefGoogle Scholar
  8. 8.
    Jung, J., et al.: Normalized metadata generation for human retrieval using multiple video surveillance cameras. Sensors 16(7), 963 (2016)CrossRefGoogle Scholar
  9. 9.
    Eisenbach, M., et al.: Learning illumination maps for color constancy in person reidentification (2013)Google Scholar
  10. 10.
    Allouch, A.: People re-identification across a camera network. Master of Science Thesis, KTH Royal Institute of Technology, Stockholm, Sweden (2010)Google Scholar
  11. 11.
    Monari, E.: Color constancy using shadow-based illumination maps for appearance-based person re-identification. In: 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 197–202. IEEE (2012)Google Scholar
  12. 12.
    Liao, S., et al.: Person re-identification by local maximal occurrence representation and metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2197–2206 (2015)Google Scholar
  13. 13.
    Morais, J.P., Georgiev, S., Sprig, W.: Real Quaternionic Calculus Handbook. Springer, Basel (2014).  https://doi.org/10.1007/978-3-0348-0622-0 CrossRefMATHGoogle Scholar
  14. 14.
    Turner, J.D.: Quaternion analysis tools for engineering and scientific applications. J. Guidance Control Dyn. 32(2), 686–693 (2009)CrossRefGoogle Scholar
  15. 15.
    Ell, T.A., Sangwine, S.J.: Hypercomplex fourier transforms of color images. IEEE Trans. Image Process. 16(1), 22–35 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bolle, R.M., et al.: The relation between the ROC curve and the CMC. In: Fourth IEEE Workshop on Automatic Identification Advanced Technologies, vol. 2005, pp. 15–20. IEEE (2005)Google Scholar
  17. 17.
    Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition, and tracking. In: Proceedings of the IEEE International Workshop on Performance Evaluation for Tracking and Surveillance (PETS) (2007)Google Scholar
  18. 18.
    Liu, C., Gong, S., Loy, C.C., Lin, X.: Person re-identification: what features are important? In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 391–401. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33863-2_39 CrossRefGoogle Scholar
  19. 19.
    Loy, C.C., Xiang, T., Gong, S.: Time-delayed correlation analysis for multi-camera activity understanding. Int. J. Comput. Vis. 90(1), 106–129 (2010)CrossRefGoogle Scholar
  20. 20.
    Luo, P., Wang, X., Tang, X.: Pedestrian parsing via deep decompositional network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2648–2655 (2013)Google Scholar
  21. 21.
    Naik, N., Patil, S., Joshi, M.: A scale adaptive tracker using hybrid color histogram matching scheme. In: 2009 2nd International Conference on Emerging Trends in Engineering and Technology (ICETET), pp. 279–284. IEEE (2009)Google Scholar
  22. 22.
    Van De Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Trans. Image Process. 16(9), 2207–2214 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gijsenij, A., Gevers, T., Van De Weijer, J.: Improving color constancy by photometric edge weighting. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 918–929 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Reynolds León Guerra
    • 1
  • Edel B. García Reyes
    • 1
  • Francisco J. Silva Mata
    • 1
  1. 1.Advanced Technologies Application Center (CENATAV)HavanaCuba

Personalised recommendations