Ultrasonic Assessment of Platelet-Rich Plasma by Digital Signal Processing Techniques

  • Julián A. Villamarín
  • Yady M. Jiménez
  • Tatiana Molano
  • Edgar W. Gutiérrez
  • Luis F. Londoño
  • David Gutiérrez
  • Daniela Montilla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)


This paper presents the implementation of an ultrasonic non-invasive and non-destructive system for the acoustic characterization of bovine Platelet-Rich Plasma based on advanced digital signal processing techniques. The system comprises the development of computational procedures that allow spectral estimation of parameters such as the angular coefficients with linear frequency dependence and the measurement of the speed of sound of regions of concern in sample studies. The results show that the relationship of acoustic parameters obtained from backscattered ultrasonic signals contributes to the hematological prediction of platelet concentration based on linear regression model.


Attenuation Backscattering Blood 


  1. 1.
    Amable, P.R., Carias, R.B., Teixeira, M.V., da Cruz Pacheco, I., do Amaral, R.J.C., Granjeiro, J.M., Borojevic, R.: Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res. Ther. 4(3), 67 (2013)CrossRefGoogle Scholar
  2. 2.
    Hessel, L.N., Bosch, G., van Weeren, P.R., Ionita, J.C.: Equine autologous platelet concentrates: a comparative study between different available systems. Equine Vet. J. 47(3), 319–325 (2015)CrossRefGoogle Scholar
  3. 3.
    Ehrenfest, D.M.D., Andia, I., Zumstein, M.A., Zhang, C.-Q., Pinto, N.R., Bielecki, T.: Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: current consensus, clinical implications and perspectives. Muscles Ligaments Tendons J. 4(1), 3–9 (2014)Google Scholar
  4. 4.
    O’Shea, C.M., Werre, S.R., Dahlgren, L.A.: Comparison of platelet counting technologies in equine platelet concentrates. Vet. Surg. 44(3), 304–313 (2015)CrossRefGoogle Scholar
  5. 5.
    Briggs, C., Harrison, P., Machin, S.J.: Continuing developments with the automated platelet count. Int. J. Lab. Hematol. 29(2), 77–91 (2007)CrossRefGoogle Scholar
  6. 6.
    Vargas, A., Amescua-Guerra, L., Bernal, A., Pineda, C.: Principios físicos básicos del ultrasonido, sonoanatomía del sistema musculoesquelético y artefactos ecogeográficos. Acta Ortopédica Mexicana 22(6), 361–373 (2008)Google Scholar
  7. 7.
    Franceschini, E., Yu, F.T., Destrempes, F., Cloutier, G.: Ultrasound characterization of red blood cell aggregation with intervening attenuating tissue-mimicking phantoms. J. Acoust. Soc. Am. 127(2), 1104–1115 (2010)CrossRefGoogle Scholar
  8. 8.
    Yu, F.T., Cloutier, G.: Experimental ultrasound characterization of red blood cell aggregation using the structure factor size estimator. J. Acoust. Soc. Am. 122(1), 645–656 (2007)CrossRefGoogle Scholar
  9. 9.
    Ma, X., Huang, B., Wang, G., Fu, X., Qiu, S.: Numerical simulation of the red blood cell aggregation and deformation behaviors in ultrasonic field. Ultrason. Sonochem. 38, 604–613 (2016)CrossRefGoogle Scholar
  10. 10.
    Schwerthoeffer, U., Winter, M., Weigel, R., Kissinger, D.: Concentration detection in water-glucose mixtures for medical applications using ultrasonic velocity measurements. In: 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 175–178. Conference, Gatineau (2013)Google Scholar
  11. 11.
    Huang, C.C.: High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz. Phys. Med. Biol. 55(19), 5801–5815 (2010)CrossRefGoogle Scholar
  12. 12.
    Nam, K., Yeom, E., Ha, H., Lee, J.: Simultaneous measurement of red blood cell aggregation and whole blood coagulation using high-frequency ultrasound. Ultrasound Med. Biol. 38(3), 468–475 (2012)CrossRefGoogle Scholar
  13. 13.
    Callé, R., Ossant, F., Gruel, Y., Lermusiaux, P., Patat, F.: High frequency ultrasound device to investigate the acoustic properties of whole blood during coagulation. Ultrasound Med. Biol. 34(2), 252–264 (2008)CrossRefGoogle Scholar
  14. 14.
    Treeby, B.E., Zhang, E.Z., Thomas, A.S., Cox, B.T.: Measurement of the ultrasound attenuation and dispersion in whole human blood and its components from 0–70 MHz. Ultrasound Med. Biol. 37(2), 289–300 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Julián A. Villamarín
    • 1
  • Yady M. Jiménez
    • 1
  • Tatiana Molano
    • 1
  • Edgar W. Gutiérrez
    • 1
  • Luis F. Londoño
    • 2
  • David Gutiérrez
    • 1
  • Daniela Montilla
    • 3
  1. 1.Antonio Nariño UniversityBogotáColombia
  2. 2.Polytechnic Colombian Jaime Isaza CadavidBelloColombia
  3. 3.Valparaíso UniversityValparaísoChile

Personalised recommendations