Clustering-Based Undersampling to Support Automatic Detection of Focal Cortical Dysplasias

  • Keider Hoyos-Osorio
  • Andrés M. Álvarez
  • Álvaro A. Orozco
  • Jorge I. Rios
  • Genaro Daza-Santacoloma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)


Focal Cortical Dysplasias (FCDs) are cerebral cortex abnormalities that cause epileptic seizures. Recently, machine learning techniques have been developed to detect FCDs automatically. However, dysplasias datasets contain substantially fewer lesional samples than healthy ones, causing high order imbalance between classes that affect the performance of machine learning algorithms. Here, we propose a novel FCD automatic detection strategy that addresses the class imbalance using relevant sampling by a clustering strategy approach in cooperation with a bagging-based neural network classifier. We assess our methodology on a public FCDs database, using a cross-validation scheme to quantify classifier sensitivity, specificity, and geometric mean. Obtained results show that our proposal achieves both high sensitivity and specificity, improving the classification performance in FCD detection in comparison to the state-of-the-art methods.


Imbalance learning Clustering Bagging 



This research is developed under the project Desarrollo de un sistema de apoyo al diagnóstico no invasivo de pacientes con epilepsia farmacoresistente asociada a displasias corticales cerebrales: Método costo-efectivo basado en procesamiento de imágenes de resonancia magnética, financed by COLCIENCIAS with code 111074455778. Thanks for the support to the master in electrical engineering program of the Universidad Tecnológica de Pereira.


  1. 1.
    Najm, I.M., Tassi, L., Sarnat, H.B., Holthausen, H., Russo, G.L.: Epilepsies associated with focal cortical dysplasias (FCDS). Acta neuropathologica 128(1), 5–19 (2014)CrossRefGoogle Scholar
  2. 2.
    Adler, S., Wagstyl, K., Gunny, R., Ronan, L., Carmichael, D., Cross, J.H., Fletcher, P.C., Baldeweg, T.: Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy. NeuroImage Clin. 14, 18–27 (2017)CrossRefGoogle Scholar
  3. 3.
    Ahmed, B., Brodley, C.E., Blackmon, K.E., Kuzniecky, R., Barash, G., Carlson, C., Quinn, B.T., Doyle, W., French, J., Devinsky, O., et al.: Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia. Epilepsy Behav. 48, 21–28 (2015)CrossRefGoogle Scholar
  4. 4.
    Hong, S.-J., Kim, H., Schrader, D., Bernasconi, N., Bernhardt, B.C., Bernasconi, A.: Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology 83(1), 48–55 (2014)CrossRefGoogle Scholar
  5. 5.
    He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)CrossRefGoogle Scholar
  6. 6.
    Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis: I. segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999)CrossRefGoogle Scholar
  7. 7.
    Pienaar, R., Fischl, B., Caviness, V., Makris, N., Grant, P.E.: A methodology for analyzing curvature in the developing brain from preterm to adult. Int. J. Imaging Syst. Technol. 18(1), 42–68 (2008)CrossRefGoogle Scholar
  8. 8.
    Yen, S.-J., Lee, Y.-S.: Cluster-based under-sampling approaches for imbalanced data distributions. Expert Syst. Appl. 36(3), 5718–5727 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wallace, B.C., Small, K., Brodley, C.E., Trikalinos, T.A.: Class imbalance, redux. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 754–763. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Keider Hoyos-Osorio
    • 1
  • Andrés M. Álvarez
    • 1
  • Álvaro A. Orozco
    • 1
  • Jorge I. Rios
    • 1
  • Genaro Daza-Santacoloma
    • 2
  1. 1.Automatic Researh GroupUniversidad Tecnológica de PereiraPereiraColombia
  2. 2.Instituto de Epilepsia y Parkinson del Eje CafeteroPereiraColombia

Personalised recommendations