Automatic Peripheral Nerve Segmentation in Presence of Multiple Annotators

  • Julián Gil González
  • Andrés M. Álvarez
  • Andrés F. Valencia
  • Álvaro A. Orozco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

Peripheral Nerve Blocking (PNB) is a technique commonly used to perform regional anesthesia. The success of PNB procedures lies of the accurate location of the target nerve. The ultrasound images (UI) have frequently been used aiming to locate nerve structures in the context of PNB procedures. This type of images allows a direct visualization of the target nerve, and the anatomical structures around it. Notwithstanding, the nerve segmentation in UI by an anesthesiologist is not straightforward since these images are affected by several artifacts; hence, the accuracy of nerve segmentation depends on the anesthesiologist expertise. In this sense, we face a scenario where we have manual multiple nerve segmentations performed by several anesthesiologists with different levels of expertise. In this paper, we propose a nerve segmentation approach based on supervised learning. For the classification step, we compare two schemes based on the concepts “Learning from crowds” aiming to code the information of multiple manual segmentations. Attained results show that our approach finds a suitable UI approximation by ensuring the identification of discriminative nerve patterns according to the opinions given by multiple specialists.

Notes

Acknowledgment

This work was funded by Colciencias under the project: “Desarrollo de un sistema de identificación de estructuras nerviosas en imágenes de ultrasonido para la asistencia de bloqueo de nervios periféricos. Aplicación al tratamiento de dolor agudo traumático y prevención del dolor neuropático crónico” (code: 1110-744-55958).

References

  1. 1.
    Hadjerci, O., Hafiane, A., Conte, D., Makris, P., Vieyres, P., Delbos, A.: Computer-aided detection system for nerve identification using ultrasound images: a comparative study. Inform. Med. Unlocked 3, 29–43 (2016)CrossRefGoogle Scholar
  2. 2.
    Hadjerci, O., Hafiane, A., Makris, P., Conte, D., Vieyres, P., Delbos, A.: Nerve detection in ultrasound images using median Gabor binary pattern. In: Campilho, A., Kamel, M. (eds.) ICIAR 2014. LNCS, vol. 8815, pp. 132–140. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11755-3_15 Google Scholar
  3. 3.
    Denny, N.M., Harrop-Griffiths, W.: Editorial I: location, location, location! ultrasound imaging in regional anaesthesia. Br. J. Anaesth. 94(1), 1–3 (2005)CrossRefGoogle Scholar
  4. 4.
    Shi, J., Schwaiger, J., Lueth, T.C.: Nerve block using a navigation system and ultrasound imaging for regional anesthesia. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 1153–1156. IEEE (2011)Google Scholar
  5. 5.
    Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006)CrossRefGoogle Scholar
  6. 6.
    González, J.G., Álvarez, M.A., Orozco, Á.A.: A probabilistic framework based on SLIC-superpixel and Gaussian processes for segmenting nerves in ultrasound imagess. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4133–4136. IEEE (2016)Google Scholar
  7. 7.
    Chan, V.W.S., Nova, H., Abbas, S., McCartney, C.J.L., Perlas, A., et al.: Ultrasound examination and localization of the sciatic nerve: a volunteer study. J. Am. Soc. Anesth. 104(2), 309–314 (2006)Google Scholar
  8. 8.
    Rodrigues, F., Pereira, F., Ribeiro, B.: Learning from multiple annotators: distinguishing good from random labelers. Pattern Recogn. Lett. 34(12), 1428–1436 (2013)CrossRefGoogle Scholar
  9. 9.
    Groot, P., Birlutiu, A., Heskes, T.: Learning from multiple annotators with Gaussian processes. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6792, pp. 159–164. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21738-8_21 CrossRefGoogle Scholar
  10. 10.
    Rodrigues, F., Pereira, F.C., Ribeiro, B.: Gaussian process classification and active learning with multiple annotators. In: ICML, pp. 433–441 (2014)Google Scholar
  11. 11.
    Rodrigues, F., Pereira, F., Ribeiro, B.: Sequence labeling with multiple annotators. Mach. Learn. 95(2), 165–181 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., Moy, L.: Learning from crowds. J. Mach. Learn. Res. 11(Apr), 1297–1322 (2010)MathSciNetGoogle Scholar
  13. 13.
    Yan, Y., Rosales, R., Fung, G., Schmidt, M.W., Valadez, G.H., Bogoni, L., Moy, L., Dy, J.G.: Modeling annotator expertise: learning when everybody knows a bit of something. In: AISTATS, pp. 932–939 (2010)Google Scholar
  14. 14.
    Bishop, C.M.: Pattern Recogn. Mach. Learn. 128, 1–58 (2006)Google Scholar
  15. 15.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient ND image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)CrossRefGoogle Scholar
  16. 16.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels. Department and School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland, Technical report, 149300 (2010)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Julián Gil González
    • 1
  • Andrés M. Álvarez
    • 1
  • Andrés F. Valencia
    • 1
  • Álvaro A. Orozco
    • 1
  1. 1.Faculty of EngineeringUniversidad Tecnológica de PereiraPereiraColombia

Personalised recommendations