Advertisement

Sclera Segmentation in Face Images Using Image Foresting Transform

  • Jullyana Fialho Pinheiro
  • João Dallyson Sousa de Almeida
  • Geraldo Braz Junior
  • Anselmo Cardoso de Paiva
  • Aristófanes Corrêa Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

The sclera is the part of the eye surround the iris, it is white and presents blood vessels that can be used for biometric recognition. In this paper, we propose a new method for sclera segmentation in face images. The method is divided into two steps: (1) the eye location and the (2) sclera segmentation. Eyes are located using Color Distance Map (CDM), Histogram of Oriented Gradients (HOG) descriptor and Random Forest (RF). The sclera is segmented by Image Foresting Transform (IFT). The first step has an accuracy of 95.95%.

Keywords

Sclera segmentation Histogram of oriented gradients Random Forest Image Foresting Transform 

References

  1. 1.
    Khosravia, M.H., Safabakhsh, R.: Human eye sclera detection and tracking using a modified time-adaptive self-organizing map. Pattern Recognit. 41, 2571–2593 (2008)CrossRefGoogle Scholar
  2. 2.
    Zhu, Z., Ji, Q., Fujimura, K., Lee, K.: Combining Kalman filtering and mean shift for real time eye tracking under active IR illumination. In: International Conference on Pattern Recognition (2002)Google Scholar
  3. 3.
    Haro, A., Flickner, M., Essa, I.: Detecting and tracking eyes by using their physiological properties, dynamics, and appearance. In: IEEE International Conference on Computer Vision and Pattern Recognition (2000)Google Scholar
  4. 4.
    Bhoi, N., Mohanty, M.N.: Template matching based eye detection in facial image. Int. J. Comput. Appl. (0975–8887) (2010)Google Scholar
  5. 5.
    Das, A., Pal, U., Ballester, M.A.F., Blumenstein, M.: A new efficient and adaptive sclera recognition system. In: Computational Intelligence in Biometrics and Identity Management (CIBIM) (2014)Google Scholar
  6. 6.
    Alkassar, S., Woo, W.L., Dlay, S.S., Chambers, J.A.: A novel method for sclera recognition with images captured on-the-move and at-a-distance. In: Biometrics and Forensics (IWBF) (2016)Google Scholar
  7. 7.
    Abdullah-Al-Wadud, M., Chae, O.: Skin segmentation using color distance map and water-flow property. In: Information Assurance and Security, ISIAS 2008. Kyung Hee University, Seoul (2008)Google Scholar
  8. 8.
    Banić, N., Lončarić, S.: Color badger: a novel retinex-based local tone mapping operator. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 400–408. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07998-1_46 Google Scholar
  9. 9.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection for image classification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, vol. 1, pp. 886–893 (2005)Google Scholar
  10. 10.
    Fleyeh, H., Roch, J.: Benchmark evaluation of HOG descriptors as features for classification of traffic signs. J. Digit. Imag. (2013)Google Scholar
  11. 11.
    Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17(4), 491–502 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    De Almeida, J.D.S., Silva, A.C., Teixeira, J.A.M., Paiva, A.C., Gattass, M.: Computer-aided methodology for syndromic strabismus diagnosis (2015)Google Scholar
  13. 13.
    de Miranda, P.A.V.: Image segmentation by the image foresting transform (2013)Google Scholar
  14. 14.
    Das, A., Pal, U., Ballester, M.A.F., Blumenstein, M.: Sclera recognition using dense-SIFT. In: Intelligent Systems Design and Applications (ISDA) (2013)Google Scholar
  15. 15.
    Proenca, H., Filipe, S., Santos, R., Oliveira, J., Alexandre, L.: The UBIRIS.v2: a database of visible wavelength images captured on-the-move and at-a-distance. IEEE Trans. PAMI 32, 1529–1535 (2010)CrossRefGoogle Scholar
  16. 16.
    Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K.: The auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of KDD (2013)Google Scholar
  17. 17.
    Zheng, Z., Yang, J., Yang, L.: A robust method for eye features extraction on color image. Pattern Recognit. Lett. 26, 2252–2261 (2005)CrossRefGoogle Scholar
  18. 18.
    Das, A., Pal, U., Ferrer, M.A., Blumenstein, M.: SSRBC 2016: sclera segmentation and recognition benchmarking competition (2016)Google Scholar
  19. 19.
    Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R.: Random forests for land cover classification. Pattern Recognit. Lett. 27, 294–300 (2006)CrossRefGoogle Scholar
  20. 20.
    Weka 3: Data Mining Software in Java. http://www.cs.waikato.ac.nz/ml/weka/

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jullyana Fialho Pinheiro
    • 1
  • João Dallyson Sousa de Almeida
    • 1
  • Geraldo Braz Junior
    • 1
  • Anselmo Cardoso de Paiva
    • 1
  • Aristófanes Corrêa Silva
    • 1
  1. 1.Universidade Federal do MaranhãoSão LuísBrazil

Personalised recommendations