A Local Branching Heuristic for the Graph Edit Distance Problem

  • Mostafa Darwiche
  • Romain Raveaux
  • Donatello Conte
  • Vincent T’Kindt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

In graph matching, Graph Edit Distance (GED) is a well-known distance measure for graphs and it is a NP-Hard minimization problem. Many heuristics are defined in the literature to give approximated solutions in a reasonable time. Some other work have used mathematical programming tools to come up with Mixed Integer Linear Program (MILP) models. In this work, a heuristic from Operational Research domain, is proposed and adapted to handle GED problem. It is called Local Branching and operates over a MILP model, where it defines neighborhoods in the solution space by adding the local branching constraint. A black-box MILP solver is then used to intensify the search in a neighborhood. This makes the solution search very fast, and allow exploring different sub-regions. Also, it includes a diversification mechanism to escape local solutions and in this work this mechanism is modified and improved. Finally, it is evaluated against other heuristics in order to show its efficiency and precision.

Keywords

Graph Edit Distance Graph matching Local branching heuristic 

References

  1. 1.
    Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y.: A graph database repository and performance evaluation metrics for graph edit distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 138–147. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18224-7_14 Google Scholar
  2. 2.
    Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph edit distance as a quadratic assignment problem. Pattern Recogn. Lett. 87, 38–46 (2016)CrossRefGoogle Scholar
  3. 3.
    Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recogn. Lett. 18(8), 689–694 (1997)CrossRefGoogle Scholar
  4. 4.
    Ferrer, M., Serratosa, F., Riesen, K.: Improving bipartite graph matching by assessing the assignment confidence. Pattern Recogn. Lett. 65, 29–36 (2015)CrossRefGoogle Scholar
  5. 5.
    Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1200–1214 (2006)CrossRefGoogle Scholar
  7. 7.
    Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P., Adam, S.: Exact graph edit distance computation using a binary linear program. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 485–495. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49055-7_43 CrossRefGoogle Scholar
  8. 8.
    Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the computation of graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR /SPR 2006. LNCS, vol. 4109, pp. 163–172. Springer, Heidelberg (2006).  https://doi.org/10.1007/11815921_17 CrossRefGoogle Scholar
  9. 9.
    Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comput. Aided Mol. Des. 16(7), 521–533 (2002)CrossRefGoogle Scholar
  10. 10.
    Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 1–12. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72903-7_1 CrossRefGoogle Scholar
  11. 11.
    Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recogn. Lett. 45, 244–250 (2014)CrossRefGoogle Scholar
  12. 12.
    Stauffer, M., Tschachtli, T., Fischer, A., Riesen, K.: A survey on applications of bipartite graph edit distance. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR 2017. LNCS, vol. 10310, pp. 242–252. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58961-9_22 CrossRefGoogle Scholar
  13. 13.
    Zeng, Z., Tung, A.K., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. Proc. VLDB Endow. 2(1), 25–36 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mostafa Darwiche
    • 1
    • 2
  • Romain Raveaux
    • 1
  • Donatello Conte
    • 1
  • Vincent T’Kindt
    • 2
  1. 1.Laboratoire d’Informatique (LI)Université François Rabelais ToursToursFrance
  2. 2.Laboratoire d’Informatique (LI), ERL-CNRS 6305Université François Rabelais ToursToursFrance

Personalised recommendations