Non-stationary Multi-output Gaussian Processes for Enhancing Resolution over Diffusion Tensor Fields

  • Jhon F. Cuellar-Fierro
  • Hernán Darío Vargas-Cardona
  • Mauricio A. Álvarez
  • Andrés M. Álvarez
  • Álvaro A. Orozco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

Diffusion magnetic resonance imaging (dMRI) is an advanced technique derived from magnetic resonance imaging (MRI) that allows the study of internal structures in biological tissue. Due to acquisition protocols and hardware limitations of the equipment employed to obtain the data, the spatial resolution of the images is often low. This inherent lack in dMRI is a considerable difficulty because clinical applications are affected. The scientific community has proposed several methodologies for enhancing the spatial resolution of dMRI data, based on interpolation of diffusion tensors fields. However, most of the methods have considerable drawbacks when they interpolate strong transitions, such as crossing fibers. Also, relevant clinical information from tensor fields is modified when interpolation is performed. In this work, we propose a probabilistic methodology for interpolation of diffusion tensors fields using multi-output Gaussian processes with non-stationary kernel function. First, each tensor is decomposed in shape and orientation features. Then, the model interpolates the features jointly. Results show that proposed approach outperforms state-of-the-art methods regarding resolution enhancement accuracy on synthetic and real data, when we evaluate interpolation quality with Frobenius and Riemann metrics. Also, the proposed method demonstrates an adequate characterization of both stationary and non-stationary fields, contrary to previous approaches where performance is seriously reduced when complex fields are interpolated.

Notes

Acknowledgments

This research is developed under the project “Desarrollo de un sistema de soporte clínico basado en el procesamiento estócasitco para mejorar la resolución espacial de la resonancia magnética estructural y de difusión con aplicación al procedimiento de la ablación de tumores” financed by COLCIENCIAS with code 111074455860 under the program: 744 Convocatoria para proyectos de ciencia, tecnología e innovación en salud 2016. H.D. Vargas is funded by Colciencias under the program: Formación de alto nivel para la ciencia, la tecnología y la innovación - Convocatoria 617 de 2013 with code 111065740687. We thank to the program of master in electrical engineering of the Universidad Tecnológica de Pereira.

References

  1. 1.
    Sąsiadek, M.J., Szewczyk, P., Bladowska, J.: Application of diffusion tensor imaging (DTI) in pathological changes of the spinal cord. Med. Sci. Monit. 18(6), RA73–RA79 (2012)Google Scholar
  2. 2.
    Del Cura, J.L., Pedraza, S.: Radiologia Esencial. Toma 2 (2010)Google Scholar
  3. 3.
    Le Bihan, D., Mangin, J.-F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13(4), 534–546 (2001)CrossRefGoogle Scholar
  4. 4.
    Gupta, V., Ayache, N., Pennec, X.: Improving DTI resolution from a single clinical acquisition: a statistical approach using spatial prior. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 477–484. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40760-4_60 CrossRefGoogle Scholar
  5. 5.
    Yang, F., Zhu, Y.-M., Magnin, I.E., Luo, J.-H., Croisille, P., Kingsley, P.B.: Feature-based interpolation of diffusion tensor fields and application to human cardiac DT-MRI. Med. Image Anal. 16(2), 459–481 (2012)CrossRefGoogle Scholar
  6. 6.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)CrossRefGoogle Scholar
  7. 7.
    Wang, Z., Vemuri, B.C., Chen, Y., Mareci, T.H.: A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI. IEEE Trans Med. Imag. 23(8), 930–939 (2004)CrossRefGoogle Scholar
  8. 8.
    Batchelor, P.G., Moakher, M., Atkinson, D., Calamante, F., Connelly, A.: A rigorous framework for diffusion tensor calculus. Magn. Reson. Med. 53(1), 221–225 (2005)CrossRefGoogle Scholar
  9. 9.
    Cardona, H.D.V., Orozco, Á.A., Álvarez, M.A.: Multi-output Gaussian processes for enhancing resolution of diffusion tensor fields. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 1111–1114. IEEE (2016)Google Scholar
  10. 10.
    Alvarez, M.A., Rosasco, L., Lawrence, N.D., et al.: Kernels for vector-valued functions: a review. Found. Trends® Mach. Learn. 4(3), 195–266 (2012)CrossRefMATHGoogle Scholar
  11. 11.
    Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)MATHGoogle Scholar
  12. 12.
    Herlands, W., Wilson, A., Nickisch, H., Flaxman, S., Neill, D., Van Panhuis, W., Xing, E.: Scalable Gaussian processes for characterizing multidimensional change surfaces. arXiv preprint arXiv:1511.04408 (2015)
  13. 13.
    Barmpoutis, A., Vemuri, B.C.: A unified framework for estimating diffusion tensors of any order with symmetric positive-definite constraints. In: Biomedical Imaging From Nano to Macro, pp. 1385–1388. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jhon F. Cuellar-Fierro
    • 1
  • Hernán Darío Vargas-Cardona
    • 1
  • Mauricio A. Álvarez
    • 2
  • Andrés M. Álvarez
    • 1
  • Álvaro A. Orozco
    • 1
  1. 1.Automatic Researh GroupUniversidad Tecnológica de PereiraPereiraColombia
  2. 2.University of SheffieldSheffieldUK

Personalised recommendations