Advertisement

DNLM-IIFFT: An Implementation of the Deceived Non Local Means Filter Using Integral Images and the Fast Fourier Transform for a Reduced Computational Cost

  • Saúl Calderón Ramírez
  • Manuel Zumbado Corrales
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

In this paper we propose an efficient implementation of the Deceived Non Local Means filter, using Integral Images and the Fast Fourier Transform, named DNLM-IFFT. The deceived non local means filter is part of the Deceived Weighted Averaging Filter Framework (DeWAFF), which defines an approach for image abstraction with a combination of unsharp masking for contrast and edges enhancement and weighted averaging filtering for noise reduction. The proposed optimization approach achieved a speedup factor up to 10.

References

  1. 1.
    Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: a review. J. ACM Comput. Surv. CSUR 43, 16 (2011)Google Scholar
  2. 2.
    Buades, A., Coll, B., Morel, J.M.: Neighborhood filters and PDEs. Numer. Math. 105(1), 1–34 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Calderón, S., Sáenz, A., Mora, R., Siles, F., Orozco, I., Buemi, M.: Dewaff: a novel image abstraction approach to improve the performance of a cell tracking system. In: 2015 4th International Work Conference on Bioinspired Intelligence (IWOBI), pp. 81–88. IEEE (2015)Google Scholar
  4. 4.
    Calderón, S., Siles, F.: Deceived bilateral filter for improving the classification of football players from TV broadcast. In: IEEE 3rd International Conference and Workshop on Bioinspired Intelligence (2014)Google Scholar
  5. 5.
    Dauwe, A., Goossens, B., Luong, H.Q., Philips, W.: A fast non-local image denoising algorithm. In: Electronic Imaging 2008, p. 681210. International Society for Optics and Photonics (2008)Google Scholar
  6. 6.
    Ekin, A., Tekalp, A.M., Mehrotra, R.: Automatic soccer video analysis and summarization. IEEE Trans. Image Process. 12(7), 796–807 (2003)CrossRefGoogle Scholar
  7. 7.
    Karnati, V., Uliyar, M., Dey, S.: Fast non-local algorithm for image denoising. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 3873–3876. IEEE (2009)Google Scholar
  8. 8.
    Li, K., Miller, E.D., Chen, M., Kanade, T., Weiss, L.E., Campbell, P.G.: Computer vision tracking of stemness. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2008, pp. 847–850. IEEE (2008)Google Scholar
  9. 9.
    Liu, Y.L., Wang, J., Chen, X., Guo, Y.W., Peng, Q.S.: A robust and fast non-local means algorithm for image denoising. J. Comput. Sci. Technol. 23(2), 270–279 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mahmoudi, M., Sapiro, G.: Fast image and video denoising via nonlocal means of similar neighborhoods. IEEE Sig. Process. Lett. 12(12), 839–842 (2005)CrossRefGoogle Scholar
  11. 11.
    Ramponi, G., Polesel, A.: Rational unsharp masking technique. J. Electron. Imaging 7(2), 333–338 (1998)CrossRefGoogle Scholar
  12. 12.
    Sáenz, A., Calderón, S., Castro, J., Mora, R., Siles, F.: Deceived bilateral filter for improving the automatic cell segmentation and tracking in the NF-kB pathway without nuclear staining. In: Braidot, A., Hadad, A. (eds.) VI Latin American Congress on Biomedical Engineering CLAIB 2014. IFMBE, vol. 49, pp. 345–348. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-319-13117-7_89 Google Scholar
  13. 13.
    Cuomo, S., De Michele, P., Piccialli, F.: 3D data denoising via nonlocal means filter by using parallel GPU strategies. Comput. Math. Methods Med. 2014, Article no. 523862 (2014)Google Scholar
  14. 14.
    Vignesh, R., Oh, B.T., Kuo, C.C.J.: Fast non-local means (NLM) computation with probabilistic early termination. IEEE Sig. Process. Lett. 17(3), 277–280 (2010)CrossRefGoogle Scholar
  15. 15.
    Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 4(34–47) (2001)Google Scholar
  16. 16.
    Wang, J., Guo, Y., Ying, Y., Liu, Y., Peng, Q.: Fast non-local algorithm for image denoising. In: 2006 IEEE International Conference on Image Processing, pp. 1429–1432. IEEE (2006)Google Scholar
  17. 17.
    Xue, B., Huang, Y., Yang, J., Shi, L., Zhan, Y., Cao, X.: Fast nonlocal remote sensing image denoising using cosine integral images. IEEE Geosci. Remote Sens. Lett. 10(6), 1309–1313 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Saúl Calderón Ramírez
    • 1
  • Manuel Zumbado Corrales
    • 1
  1. 1.Computing School, Costa Rican Institute of TechnologyPAttern Recognition and MAchine Learning Group (PARMA-Group)CartagoCosta Rica

Personalised recommendations