Real-Time Brand Logo Recognition

  • Leonardo Bombonato
  • Guillermo Camara-Chavez
  • Pedro Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10657)

Abstract

The increasing popularity of Social Networks makes change the way people interact. These interactions produce a huge amount of data and it opens the door to new strategies and marketing analysis. According to Instagram (https://instagram.com/press/) and Tumblr (https://www.tumblr.com/press), an average of 80 and 59 million photos respectively are published every day, and those pictures contain several implicit or explicit brand logos. The analysis and detection of logos in natural images can provide information about how widespread is a brand. In this paper, we propose a real-time brand logo recognition system, that outperforms all other state-of-the-art methods for the challenging FlickrLogos-32 dataset. We experimented with 5 different approaches, all based on the Single Shot MultiBox Detector (SSD). Our best results were achieved with the SSD 512 pretrained, where we outperform by 2.5% of F-score and by 7.4% of recall the best results on this dataset. Besides the higher accuracy, this approach is also relatively fast and can process with a single Nvidia Titan X 19 images per second.

Keywords

Computer vision Brand logo recognition Deep learning CNN 

Notes

Acknowledgements

The authors thank UFOP and funding Brazilian agency CNPq.

References

  1. 1.
    Bianco, S., Buzzelli, M., Mazzini, D., Schettini, R.: Logo recognition using CNN features. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9280, pp. 438–448. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23234-8_41 CrossRefGoogle Scholar
  2. 2.
    Bianco, S., Buzzelli, M., Mazzini, D., Schettini, R.: Deep learning for logo recognition. arXiv preprint arXiv:1701.02620 (2017)
  3. 3.
    Boia, R., Florea, C.: Homographic class template for logo localization and recognition. In: Paredes, R., Cardoso, J.S., Pardo, X.M. (eds.) IbPRIA 2015. LNCS, vol. 9117, pp. 487–495. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19390-8_55 CrossRefGoogle Scholar
  4. 4.
    Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014)
  5. 5.
    Eggert, C., Winschel, A., Lienhart, R.: On the benefit of synthetic data for company logo detection. In: Proceedings of the 23rd Annual ACM Conference on Multimedia Conference, pp. 1283–1286. ACM (2015)Google Scholar
  6. 6.
    Francesconi, E., Frasconi, P., Gori, M., Marinai, S., Sheng, J.Q., Soda, G., Sperduti, A.: Logo recognition by recursive neural networks. In: Tombre, K., Chhabra, A.K. (eds.) GREC 1997. LNCS, vol. 1389, pp. 104–117. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-64381-8_43 CrossRefGoogle Scholar
  7. 7.
    Hoi, S.C., Wu, X., Liu, H., Wu, Y., Wang, H., Xue, H., Wu, Q.: Logo-net: large-scale deep logo detection and brand recognition with deep region-based convolutional networks. arXiv preprint arXiv:1511.02462 (2015)
  8. 8.
    Iandola, F.N., Shen, A., Gao, P., Keutzer, K.: Deeplogo: hitting logo recognition with the deep neural network hammer. arXiv preprint arXiv:1510.02131 (2015)
  9. 9.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
  10. 10.
    Li, K.W., Chen, S.Y., Su, S., Duh, D.J., Zhang, H., Li, S.: Logo detection with extendibility and discrimination. Multimedia Tools Appl. 72(2), 1285–1310 (2014)CrossRefGoogle Scholar
  11. 11.
    Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.: SSD: single shot multibox detector. arXiv preprint arXiv:1512.02325 (2015)
  12. 12.
    Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46448-0_2 CrossRefGoogle Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k2) (1983)Google Scholar
  15. 15.
    Oliveira, G., Frazão, X., Pimentel, A., Ribeiro, B.: Automatic graphic logo detection via fast region-based convolutional networks. arXiv preprint arXiv:1604.06083 (2016)
  16. 16.
    Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRefGoogle Scholar
  17. 17.
    Revaud, J., Douze, M., Schmid, C.: Correlation-based burstiness for logo retrieval. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 965–968. ACM (2012)Google Scholar
  18. 18.
    Romberg, S., Lienhart, R.: Bundle min-hashing for logo recognition. In: Proceedings of the 3rd ACM International Conference on Multimedia Retrieval, pp. 113–120. ACM (2013)Google Scholar
  19. 19.
    Romberg, S., Pueyo, L.G., Lienhart, R., Van Zwol, R.: Scalable logo recognition in real-world images. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, p. 25. ACM (2011)Google Scholar
  20. 20.
    Yang, F., Bansal, M.: Feature fusion by similarity regression for logo retrieval. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), p. 959. IEEE (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Leonardo Bombonato
    • 1
  • Guillermo Camara-Chavez
    • 1
  • Pedro Silva
    • 1
  1. 1.Federal University of Ouro PretoOuro PretoBrazil

Personalised recommendations