Skip to main content

Ozone Toxicity and Remediation in Crop Plants

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 27

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 27))

Abstract

Tropospheric ozone (O3) phytotoxicity is a major threat to agricultural production leading to global yield loss of about 3.9–15% for wheat, 8.5–14% for soybean and 2.2–5.5% for maize. At a global scale, the United States displays a decline in O3 level of about 17% from 2000–2015. O3 concentration in the United States is about two times higher than that of Europe. Despite the declining trend in these two continents, the prevailing concentrations are still high enough to affect the plant growth and productivity. Beside this, a significant rise in O3 pollution is observed in various Asian countries. China, the fastest developing nation of Asia, has shown an increase of surface O3 concentration by 0.58 ppbv/yr. from 1994 to 2007. A continuous increase in the emission of O3 precursors in southern and central Asia has been reported due to weaker legislative policies in the developing countries, contributing to more O3 prevalence in such regions. A simulation study projected an increase of global tropospheric O3 by 4.3 ± 2.2 ppb with maximum increment displayed in South Asia, South-East Asia and Middle Eastern region.

Taking into consideration the O3 induced toxicity in the crop plants, here we review the O3 formation chemistry, its prevalence, spatial-temporal variation, phytotoxicity, and related economic and yield losses. We have also emphasized on the effectiveness of potential agronomic practices, approaches and their applicability in reducing O3 induced yield losses. Soil amendments, tillage practices, use of plant protectants, shifting of crop calendars, weed management, plantation strategies, seed treatment and management of abiotic stress such as drought and salinity can be implemented in improving crop productivity against O3 stress. For example, with the application of 1.5 times recommended NPK dose, an improvement in total biomass by 25.4% in wheat cultivar LOK 1 has been observed as compared to recommended dose. Furthermore, application of plant protectant such as ethylene diurea has been reported to reduce visible O3 injury by 76%, increased photosynthetic rate by 8%, above ground biomass by 7% and crop yield by 15%. Exogenous application of ascorbic acid at 50 mM/L exhibited protection against 800 ppb O3 in barley seedlings along with improvement in photoregulation of Rubisco activity. Plantation of high volatile organic compound (VOC) emitters emitters such as Dalbergia sissoo, Ficus religiosa, Eucalyptus globulus etc. must be avoided in the vicinity of agricultural areas as VOC is one of the major precursor that drives the level of surface O3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal SB, Singh A, Rathore D (2004) Assessing the effects of ambient air pollution on growth, biochemical and yield characteristics of three cultivars of wheat (Triticum aestivum L.) with ethylenediurea and ascorbic acid. J Plant Biol 31:165–172

    CAS  Google Scholar 

  • Ainsworth EA, Rogers A, Leakey AD (2008) Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol 147:13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali K, Inamdar SR, Beig G, Ghude S, Peshin S (2012) Surface ozone scenario at Pune and Delhi during the decade of 1990s. J Earth Syst Sci 121:373–383

    Article  CAS  Google Scholar 

  • Andersen CP (2003) Source–sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228

    Article  CAS  Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Astorino G, Margani I, Tripodo P, Manes F (1995) The response of Phaseolus vulgaris L. cv. Lit. To different dosages of the anti–ozonant ethylenediurea (EDU) in relation to chronic treatment with ozone. Plant Sci 111:237–248

    Article  CAS  Google Scholar 

  • Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011a) Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos Environ 45:2284–2296

    Article  CAS  Google Scholar 

  • Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011b) Global crop yield reductions due to surface ozone exposure: 2 year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ 45:2297–2309

    Article  CAS  Google Scholar 

  • Aydin YM, Yaman B, Koca H, Dasdemir O, Kara M, Altiok H, Dumanoglu Y, Bayram A, Tolunay D, Odabasi M, Elbir T (2014) Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species. Sci Tot Environ 490:239–253

    Article  CAS  Google Scholar 

  • Bayer C, Zschornack T, Pedroso GM, da Rosa CM, Camargo ES, Boeni M, Marcolin E, dos Reis CE, dos Santos DC (2015) A seven-year study on the effects of fall soil tillage on yield–scaled greenhouse gas emission from flood irrigated rice in a humid subtropical climate. Soil Tillage Res 145:118–125

    Article  Google Scholar 

  • Bergweiler CJ, Manning WJ (1999) Inhibition of flowering and reproductive success in spreading dogbane (Apocynum androsaemifolium) by exposure to ambient ozone. Environ Pollut 105:333–339

    Article  CAS  PubMed  Google Scholar 

  • Betzelberger AM, Gillespie KM, Mcgrath JM, Koester RP, Nelson RL, Ainsworth EA (2010) Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars. Plant Cell Environ 33:1569–1581

    PubMed  Google Scholar 

  • Biswas DK, Jiang GM (2011) Differential drought-induced modulation of ozone tolerance in winter wheat species. J Exper Bot err 104:1–10

    Google Scholar 

  • Biswas DK, Xu H, Li YG, Sun JZ, Wang XZ, Han XG, Jiang GM (2008) Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Glob Chang Biol 14:46–59

    Google Scholar 

  • Biswas DK, Xu H, Yang JC, Li YG, Chen SB, Jiang CD, Li WD, Ma KP, Adhikary SK, Wang XZ, Jiang GM (2009) Impacts of methods and sites of plant breeding on ozone sensitivity in winter wheat cultivars. Agric Ecosyst Environ 134:168–177

    Article  CAS  Google Scholar 

  • Black VJ, Black CR, Roberts JA, Stewart CA (2000) Tansley review no. 115. New Phytol 147:421–447

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot-London 91:179–194

    Article  CAS  Google Scholar 

  • Blum O, Didyk N (2006) Ambient ozone phytodetection with sensitive clover (Trifolium subterraneum L. cv. Geraldton) in Ukraine. In: Arapis G, Goncharova N, Baveye P (eds) Ecotoxicology, ecological risk assessment and multiple stressors. Springer, Netherlands, pp 279–289

    Chapter  Google Scholar 

  • Blum O, Didyk N (2007) Study of ambient ozone phytotoxicity in Ukraine and ozone protective effect of some antioxidants. J Hazard Mater 149:598–602

    Article  CAS  PubMed  Google Scholar 

  • Blum O, Didyk N, Pavluchenko N, Godzik B (2011) Assessment of protective effect of some modern agrochemicals against ozone-induced stress in sensitive clover and tobacco cultivars. J Toxicol:1–4

    Article  CAS  Google Scholar 

  • Bracho-Nunez A, Knothe N, Welter S, Staudt M, Costa WR, Liberato MA, Piedade MT, Kesselmeier J (2013) Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants. Biogeosciences 10:5855–5873

    Article  CAS  Google Scholar 

  • Brunschön-Harti S, Fangmeier A, Jäger HJ (1995) Influence of ozone and ethylenediurea (EDU) on growth and yield of bean (Phaseolus vulgaris L.) in open-top field chambers. Environ Pollut 90:89–94

    Article  PubMed  Google Scholar 

  • Burkey KO, Carter TE (2009) Foliar resistance to ozone injury in the genetic base of US and Canadian soybean and prediction of resistance in descendent cultivars using coefficient of parentage. Field Crop Res 111:207–217

    Article  Google Scholar 

  • Calatayud A, Barreno E (2001) Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environ Pollut 115:283–289

    Article  CAS  PubMed  Google Scholar 

  • Calfapietra C, Fares S, Manes F, Morani A, Sgrigna G, Loreto F (2013) Role of biogenic volatile organic compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review. Environ Pollut 183:71–80

    Article  CAS  PubMed  Google Scholar 

  • Calvo E, Calvo I, Jimenez A, Porcuna JL, Sanz MJ (2009) Using manure to compensate ozone–induced yield loss in potato plants cultivated in the east of Spain. Agri Ecosyst Environ 131:185–192

    Article  CAS  Google Scholar 

  • Carnahan JE, Jenner EL, Wat EK (1978) Prevention of ozone injury to plants by a new protectant chemical. Phytopathology 68:1229

    Article  Google Scholar 

  • Carrasco-Rodriguez JL, Asensi-Fabado A, Del Valle-Tascon S (2005) Effects of tropospheric ozone on potato plants protected by the antioxidant diphenylamine (DPA). Water Air Soil Poll 161:299–312

    Article  CAS  Google Scholar 

  • Castagna A, Ranieri A (2009) Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment. Environ Pollut 157:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Chameides WL, Lindsay RW, Richardson J, Kiang CS (1988) The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science (Washington, DC) 241:1473–1475

    Article  CAS  Google Scholar 

  • Chatani S, Amann M, Klimont Z, Goel A, Kumar A, Mishra A, Sharma S, Hao J, Wang S, Wang Y, Zhao B (2013) Future prediction of tropospheric ozone over south and East Asia in 2030, pp 1–5

    Google Scholar 

  • Chaudhary N, Agrawal SB (2014) Role of gamma radiation in changing phytotoxic effect of elevated level of ozone in Trifolium alexandrinum L.(clover). Atmos Pollut Res 5:104–112

    Article  CAS  Google Scholar 

  • Chaudhary N, Agrawal SB (2015) The role of elevated ozone on growth, yield and seed quality amongst six cultivars of mung bean. Ecotox Environ Safe 111:286–294

    Article  CAS  Google Scholar 

  • Cho K, Tiwari S, Agrawal SB, Torres NL, Agrawal M, Sarkar A, Shibato J, Agrawal GK, Kubo A, Rakwal R (2011) Tropospheric ozone and plants: absorption, responses, and consequences. Rev Environ Contam T 212:61–111

    CAS  Google Scholar 

  • Cole CV, Duxbury J, Freney J, Heinemeyer O, Minami K, Mosier A, Paustian K, Rosenberg N, Sampson N, Sauerbeck D, Zhao Q (1997) Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr Cycl Agroecosyst 49:221–228

    Article  CAS  Google Scholar 

  • Cooper O, Ziemke J (2015) [global climate] tropospheric ozone [in “state of the climate in 2014”]. Bull Amer Meteor Soc 96:S48

    Google Scholar 

  • Cooper OR, Parrish DD, Stohl A, Trainer M, Nédélec P, Thouret V, Cammas JP, Oltmans SJ, Johnson BJ, Tarasick D, Leblanc T (2010) Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 463:344–348

    Article  CAS  PubMed  Google Scholar 

  • Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque JF, Naik V (2014) Global distribution and trends of tropospheric ozone: an observation–based review. Elementa: Science of the Anthropocene 2:000029

    Google Scholar 

  • Cui XC, Hu JL, Lin XG, Wang FY, Chen RR, Wang JH, Zhu JG (2013) Arbuscular mycorrhizal fungi alleviate ozone stress on nitrogen nutrition of field wheat. J Agri Sci Tech–Iran 15:1043–1052

    CAS  Google Scholar 

  • David LM, Nair PR (2011) Diurnal and seasonal variability of surface ozone and NOx at a tropical coastal site: association with mesoscale and synoptic meteorological conditions. J Geophys Res Atmos 116(D10):1–16

    Article  CAS  Google Scholar 

  • Davison AW, Barnes JD (1998) Effects of ozone on wild plants. New Phytol 139:135–151

    Article  CAS  Google Scholar 

  • Debaje SB (2014) Estimated crop yield losses due to surface ozone exposure and economic damage in India. Environ Sci Pollut R 21:7329–7338

    Article  CAS  Google Scholar 

  • Debaje SB, Kakade AD (2009) Surface ozone variability over western Maharashtra, India. J Hazard Mater 161:686–700

    Article  CAS  PubMed  Google Scholar 

  • Didyk NP, Blum OB (2011) Natural antioxidants of plant origin against ozone damage of sensitive crops. Acta Physiol Plant 33:25–34

    Article  CAS  Google Scholar 

  • Dizengremel P (2001) Effects of ozone on the carbon metabolism of forest trees. Plant Physiol Bioch 39:729–742

    Article  CAS  Google Scholar 

  • Dordas CA, Sioulas C (2008) Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Ind Crop Prod 27:75–85

    Article  CAS  Google Scholar 

  • Dunning JA, Heck WW, Tingey DT (1974) Foliar sensitivity of pinto bean and soybean to ozone as affected by temperature, potassium nutrition and ozone dose. Water Air Soil Poll 3:305–313

    CAS  Google Scholar 

  • EEA (2016) AirBase–the European air quality database, European Environment Agency. Accessed: 9th Sep 2016

    Google Scholar 

  • Elampari K, Debaje SB, Jeyakumar SJ, Chithambarathanu T (2013) Measurements of ozone and its precursor nitrogen dioxide and crop yield losses due to cumulative ozone exposures over 40 ppb (AOT40) in rural coastal southern India. J Atmos Chem 70:357–371

    Article  CAS  Google Scholar 

  • Emberson LD, Büker P, Ashmore MR, Mills G, Jackson LS, Agrawal M, Atikuzzaman MD, Cinderby S, Engardt M, Jamir C, Kobayashi K (2009) A comparison of north American and Asian exposure-response data for ozone effects on crop yields. Atmos Environ 43:1945–1953

    Article  CAS  Google Scholar 

  • Erley GSA, Wijaya KA, Ulas A, Becker H, Wiesler F, Horst WJ (2007) Leaf senescence and N uptake parameters as selection traits for nitrogen efficiency of oilseed rape cultivars. Physiol Plantarum 130:519–531

    Article  CAS  Google Scholar 

  • Estes BL, Enebak SA, Chappelka AH (2004) Loblolly pine seedling growth after inoculation with plant growth-promoting rhizobacteria and ozone exposure. Can J For Res 34:1410–1416

    Article  CAS  Google Scholar 

  • Feng Z, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos Environ 43:1510–1519

    Article  CAS  Google Scholar 

  • Feng Z, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.):a meta-analysis. Glob Chang Biol 14:2696–2708

    Google Scholar 

  • Feng Z, Wang S, Szantoi Z, Chen S, Wang X (2010) Protection of plants from ambient ozone by applications of ethylenediurea (EDU): a meta-analytic review. Environ Pollut 158:3236–3242

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Pang J, Kobayashi K, Zhu J, Ort DR (2011) Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Glob Chang Biol 17:580–591

    Article  Google Scholar 

  • Feng Z, Hu E, Wang X, Jiang L, Liu X (2015) Ground-level O3 pollution and its impacts on food crops in China: a review. Environ Pollut 199:42–48

    Article  CAS  PubMed  Google Scholar 

  • Finlayson-Pitts BJ, Pitts Jr JN (1993) Atmospheric chemistry of tropospheric ozone formation: scientific and regulatory implications. J Air Waste Manage Assoc 43:1091–1100

    Article  CAS  Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011

    Article  CAS  Google Scholar 

  • Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois JJ (2007) Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exp Bot 61:190–198

    Article  CAS  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R, Miller HL (eds) (2007) Changes in atmospheric constituents and in radiative forcing chapter 2, in: climate change the physical science basis. Cambridge University Press, United Kingdom, pp 129–234

    Google Scholar 

  • Fowler D, Amann M, Anderson F, Ashmore M, Cox P, Depledge M, Derwent D, Grennfelt P, Hewitt N, Hov O, Jenkin M (2008) Ground–level ozone in the 21st century: future trends, impacts and policy implications. Royal Society Science Policy Report:1–132

    Google Scholar 

  • Freebairn HT (1957) Reversal of inhibitory effects of ozone on oxygen uptake of mitochondria. Science 126:303–304

    Article  CAS  PubMed  Google Scholar 

  • Frei M (2015) Breeding of ozone resistant rice: relevance, approaches and challenges. Environ Pollut 197:144–155

    Article  CAS  PubMed  Google Scholar 

  • Frei M, Tanaka JP, Wissuwa M (2008) Genotypic variation in tolerance to elevated ozone in rice: dissection of distinct genetic factors linked to tolerance mechanisms. J Exper Bot 59:3741–3752

    Article  CAS  Google Scholar 

  • Fuhrer J (2009) Ozone risk for crops and pastures in present and future climates. Naturwissenschaften 96:173–194

    Article  CAS  PubMed  Google Scholar 

  • Gatta L, Mancino L, Federico R (1997) Translocation and persistence of EDU (ethylenediurea) in plants: the relationship with its role in ozone damage. Environ Pollut 96:445–448

    Article  CAS  PubMed  Google Scholar 

  • Gaur A, Tripathi SN, Kanawade VP, Tare V, Shukla SP (2014) Four-year measurements of trace gases (SO2, NOx, CO, and O3) at an urban location, Kanpur, in northern India. J Atmos Chem 71:283–301

    Article  CAS  Google Scholar 

  • Gauss M, Ellingsen K, Isaksen ISA, Dentener FJ, Stevenson DS, Amann M, Cofala J (2007) Changes in nitrogen dioxide and ozone over southeast and East Asia between year 2000 and 2030 with fixed meteorology source. Terres Atmos Ocean Sci 18:475–492

    Article  Google Scholar 

  • Gerosa G, Marzuoli R, Finco A, Monga R, Fusaro I, Faoro F (2014) Contrasting effects of water salinity and ozone concentration on two cultivars of durum wheat (Triticum durum Desf.) in Mediterranean conditions. Environ Pollut 193:13–21

    Article  CAS  PubMed  Google Scholar 

  • Ghude SD, Jena C, Chate DM, Beig G, Pfister GG, Kumar R, Ramanathan V (2014) Reductions in India's crop yield due to ozone. Geophys Res Lett 41:5685–5691

    Article  Google Scholar 

  • Gopal KR, Lingaswamy AP, Arafath SM, Balakrishnaiah G, Kumari SP, Devi KU, Reddy NS, Reddy KR, Reddy RR, Azeem PA, Lal S (2014) Seasonal heterogeneity in ozone and its precursors (NO x) by in–situ and model observations on semi–arid station in Anantapur (AP), South India. Atmos Environ 84:294–306

    Article  CAS  Google Scholar 

  • Guidi L, Degl’Innocenti E, Giordano C, Biricolti S, Tattini M (2010) Ozone tolerance in Phaseolus vulgaris depends on more than one mechanism. Environ Pollut 158:3164–3171

    Article  CAS  PubMed  Google Scholar 

  • Harmens H, Mills G (2014) Air pollution: deposition to and impacts on vegetation in (South-) East Europe, Caucasus, Central Asia (EECCA/SEE) and South–East Asia. NERC/Centre for Ecology & Hydrology (pp 1–72)

    Google Scholar 

  • Hassan IA (2004) Interactive effects of salinity and ozone pollution on photosynthesis, stomatal conductance, growth, and assimilate partitioning of wheat (Triticum aestivum L.) Photosynth Res 42:111–116

    Article  CAS  Google Scholar 

  • Hatzios KK (1983) Effects of CGA-43089 on responses of sorghum (Sorghum bicolor) to metolachlor combined with ozone or antioxidants. Weed Sci:280–284

    Google Scholar 

  • Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D (2002) Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiol Biochem 40:691–696

    Article  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exper Bot 58:2369–2387

    Article  CAS  Google Scholar 

  • Holland M, Kinghorn S, Emberson L, Cinderby S, Ashmore M, Mills G, Harmens H (2006) Development of a framework for probabilistic assessment of the economic losses caused by ozone damage to crops in Europe, pp 1–50

    Google Scholar 

  • Horowitz LW (2006) Past, present, and future concentrations of tropospheric ozone and aerosols: methodology, ozone evaluation, and sensitivity to aerosol wet removal. J Geophys Res Atmos 111(D22):1–16

    Article  Google Scholar 

  • Jacob DJ, Logan JA, Murti PP (1999) Effect of rising Asian emissions on surface ozone in the United States. Geophys Res Lett 26:2175–2217

    Article  CAS  Google Scholar 

  • Jain SL, Arya BC, Kumar A, Ghude SD, Kulkarni PS (2005) Observational study of surface ozone at New Delhi, India. Int J Remote Sens 26:3515–3524

    Article  Google Scholar 

  • Jena C, Ghude SD, Pfister GG, Chate DM, Kumar R, Beig G, Surendran DE, Fadnavis S, Lal DM (2015) Influence of springtime biomass burning in South Asia on regional ozone (O3): a model based case study. Atmos Environ 100:37–47

    Article  CAS  Google Scholar 

  • Jenkin ME (2008) Trends in ozone concentration distributions in the UK since 1990: local, regional and global influences. Atmos Environ 42:5434–5445

    Article  CAS  Google Scholar 

  • Kangasjärvi J, Jaspers P, Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant Cell Environ 28:1021–1036

    Article  Google Scholar 

  • Khan S, Soja G (2003) Yield responses of wheat to ozone exposure as modified by drought–induced differences in ozone uptake. Water Air Soil Poll 147:299–315

    Article  CAS  Google Scholar 

  • Kleanthous S, Vrekoussis M, Mihalopoulos N, Kalabokas P, Lelieveld J (2014) On the temporal and spatial variation of ozone in Cyprus. Sci Tot Environ 476:677–687

    Article  CAS  Google Scholar 

  • Koiwai A, Kisaki T (1976) Effect of ozone on photosystem II of tobacco chloroplasts in the presence of piperonyl butoxide. Plant Cell Physiol 17:1199–1207

    CAS  Google Scholar 

  • Kovacs E, Keresztes A (2002) Effect of gamma and UV-B/C radiation on plant cells. Micron 33:199–210

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Naja M, Venkataramani S, Wild O (2010) Variations in surface ozone at Nainital: a high-altitude site in the central Himalayas. J Geophys Res 115(D16):1–12

    Article  CAS  Google Scholar 

  • Langner J, Engardt M, Baklanov A, Christensen JH, Gauss M, Geels C, Hedegaard GB, Nuterman R, Simpson D, Soares J, Sofiev M (2012) A multi–model study of impacts of climate change on surface ozone in Europe. Atmos Chem Phys 12:10423–10440

    Article  CAS  Google Scholar 

  • Lauer JG, Carter PR, Wood TM, Diezel G, Wiersma DW, Rand RE, Mlynarek MJ (1999) Corn hybrid response to planting date in the northern corn belt. Agron J 91:834–839

    Article  Google Scholar 

  • Lee EH, Bennett JH (1982) Superoxide dismutase a possible protective enzyme against ozone injury in snap beans (Phaseolus vulgaris L.) Plant Physiol 69:1444–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EH, Chen CM (1982) Studies on the mechanisms of ozone tolerance: Cytokinin-like activity of N-[2-(2-oxo-1-imidazolidinyl) ethyl]-N'-phenylurea, a compound protecting against ozone injury. Physiol Plantarum 56:486–491

    Article  CAS  Google Scholar 

  • Lee EH, Upadhyaya A, Agrawal M, Rowland RA (1997) Mechanisms of ethylenediurea (EDU) induced ozone protection: reexamination of free radical scavenger systems in snap bean exposed to O3. Environ Exp Bot 38:199–209

    Article  CAS  Google Scholar 

  • Leisner CP, Ainsworth EA (2012) Quantifying the effects of ozone on plant reproductive growth and development. Glob Chang Biol 18:606–616

    Article  Google Scholar 

  • Lerdau M, Guenther A, Monson R (1997) Plant production and emission of volatile organic compounds. Bioscience 47:373–383

    Article  Google Scholar 

  • Li CH, Wang TZ, Li Y, Zheng YH, Jiang GM (2013) Flixweed is more competitive than winter wheat under ozone pollution: evidences from membrane lipid peroxidation, antioxidant enzymes and biomass. PLoS One 8:1–9

    Google Scholar 

  • Li C, Meng J, Guo L, Jiang G (2015) Effects of ozone pollution on yield and quality of winter wheat under flixweed competition. Environ Exper Bot:1–8

    Google Scholar 

  • Lin DI, Lur HS, Chu C (2001) Effects of abscisic acid on ozone tolerance of rice (Oryza sativa L.) seedlings. Plant Growth Regul 35:295–300

    Article  CAS  Google Scholar 

  • Llusia J, Peñuelas J, Guenther A, Rapparini F (2013) Seasonal variations in terpene emission factors of dominant species in four ecosystems in NE Spain. Atmos Environ 70:149–158

    Article  CAS  Google Scholar 

  • Mächler F, Wasescha MR, Krieg F, Oertli JJ (1995) Damage by ozone and protection by ascorbic acid in barley leaves. J Plant Physiol 147:469–473

    Article  Google Scholar 

  • Maggio A, Chiarandà FQ, Cefariello R, Fagnano M (2009) Responses to ozone pollution of alfalfa exposed to increasing salinity levels. Environ Pollut 157:1445–1452

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra PS, Jena J, Moharana S, Srichandan H, Das T, Chaudhury GR, Das SN (2012) Surface ozone variation at Bhubaneswar and intra–corelationship study with various parameters. J Earth Syst Sci 121:1163–1175

    Article  CAS  Google Scholar 

  • Manning WJ, Paoletti E, Sandermann H, Ernst D (2011) Ethylenediurea (EDU): a research tool for assessment and verification of the effects of ground level ozone on plants under natural conditions. Environ Pollut 159:3283–3293

    Article  CAS  PubMed  Google Scholar 

  • Markovic DM, Markovic DA (2005) The relationship between some meteorological parameters and the tropospheric concentrations of ozone in the urban area of Belgrade. J Serb Chem Soc 70:1487–1495

    Article  CAS  Google Scholar 

  • Mauzerall DL, Wang X (2001) Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling science and standard setting in the United States, Europe, and Asia. Annu Rev Energ Environ 26:237–268

    Article  Google Scholar 

  • McGrath JM, Betzelberger AM, Wang S, Shook E, Zhu XG, Long SP, Ainsworth EA (2015) An analysis of ozone damage to historical maize and soybean yields in the United States. P Natl Acad of Sci 112:14390–14395

    Article  CAS  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z–C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Menéndez S, Lopez-Bellido RJ, Benítez-Vega J, Gonzalez-Murua C, Lopez-Bellido L, Estavillo JM (2008) Long-term effect of tillage, crop rotation and N fertilization to wheat on gaseous emissions under rainfed Mediterranean conditions. Eur J Agron 28:559–569

    Article  CAS  Google Scholar 

  • Mishra AK, Rai R, Agrawal SB (2013) Differential response of dwarf and tall tropical wheat cultivars to elevated ozone with and without carbon dioxide enrichment: growth, yield and grain quality. Field Crop Res 145:21–32

    Article  Google Scholar 

  • Monks PS, Archibald AT, Colette A, Cooper O, Coyle M, Derwent R, Fowler D, Granier C, Law KS, Mills GE, Stevenson DS (2015) Tropospheric ozone and its precursors from the urban to the global scale from air quality to short–lived climate forcer. Atmos Chem Phys 15:8889–8973

    Article  CAS  Google Scholar 

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ 26:1317–1328

    Article  CAS  Google Scholar 

  • Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP (2006) Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytol 170:333–343

    Article  PubMed  Google Scholar 

  • Moussa HR (2008) Gamma irradiation effects on antioxidant enzymes and G6PDH activities in Vicia faba plants. J New Seeds 9:89–99

    Article  Google Scholar 

  • Moussa H (2011) Low dose of gamma irradiation enhanced drought tolerance in soybean. Acta Agronomica Hung 59:1–2

    Article  CAS  Google Scholar 

  • Naja M, Akimoto H (2004) Contribution of regional pollution and long-range transport to the Asia-Pacific region: analysis of long-term ozonesonde data over Japan. J Geophys Res Atmos 109:1–15

    Article  Google Scholar 

  • Naja M, Lal S, Chand D (2003) Diurnal and seasonal variabilities in surface ozone at a high altitude site Mt Abu (24.6 N, 72.7 E, 1680m asl) in India. Atmos Environ 37:4205–4215

    Article  CAS  Google Scholar 

  • Nishanth T, Kumar MS, Valsaraj KT (2012) Variations in surface ozone and NOx at Kannur: a tropical, coastal site in India. J Atmos Chem 69:101–126

    Article  CAS  Google Scholar 

  • Owen SM, Boissard C, Hewitt CN (2001) Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species. VOC speciation and extrapolation to habitat scale Atmos Environ 35:5393–5409

    CAS  Google Scholar 

  • Pandey AK, Majumder B, Keski-Saari S, Kontunen-Soppela S, Pandey V, Oksanen E (2014) Differences in responses of two mustard cultivars to ethylenediurea (EDU) at high ambient ozone concentrations in India. Agric Ecosyst Environ 196:158–166

    Article  CAS  Google Scholar 

  • Pandey AK, Majumder B, Keski-Saari S, Kontunen-Soppela S, Mishra A, Sahu N, Pandey V, Oksanen E (2015) Searching for common responsive parameters for ozone tolerance in 18 rice cultivars in India: results from ethylenediurea studies. Sci Total Environ 532:230–238

    Article  CAS  PubMed  Google Scholar 

  • Paoletti E, Contran N, Manning WJ, Castagna A, Ranieri A, Tagliaferro F (2008) Protection of ash (Fraxinus excelsior) trees from ozone injury by ethylenediurea (EDU): roles of biochemical changes and decreased stomatal conductance in enhancement of growth. Environ Pollut 155:464–472

    Article  CAS  PubMed  Google Scholar 

  • Plaza-Bonilla D, Álvaro-Fuentes J, Arrúe JL, Cantero-Martínez C (2014) Tillage and nitrogen fertilization effects on nitrous oxide yield-scaled emissions in a rainfed Mediterranean area. Agri Ecosyst Environ 189:43–52

    Article  CAS  Google Scholar 

  • Pleijel H, Eriksen AB, Danielsson H, Bondesson N, Selldén G (2006) Differential ozone sensitivity in an old and a modern Swedish wheat cultivar-grain yield and quality, leaf chlorophyll and stomatal conductance. Environ Exp Bot 56:63–71

    Article  CAS  Google Scholar 

  • Pollastrini M, Desotgiu R, Camin F, Ziller L, Gerosa G, Marzuoli R, Bussotti F (2014) Severe drought events increase the sensitivity to ozone on poplar clones. Environ Exper Bot 100:94–104

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M (2012) Impact of tropospheric ozone on crop plants. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 82:241–257

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2010) Threat to food security under current levels of ground level ozone: a case study for Indian cultivars of rice. Atmos Environ 44:4272–4882

    Article  CAS  Google Scholar 

  • Rai R, Rajput M, Agrawal M, Agrawal SB (2011) Gaseous air pollutants: a review on current and future trends of emissions and impact on agriculture. J Sci Res 55:77–102

    Google Scholar 

  • Rai R, Singh AA, Agrawal SB, Agrawal M (2016) Tropospheric O3: a cause of concern for terrestrial plants. In: Kulshrestha U, Saxena P (eds) Plant responses to air pollution springer, Singapore, pp 165–195

    Chapter  Google Scholar 

  • Rajput M, Agrawal M (2005) Biomonitoring of air pollution in a seasonally dry tropical suburban area using wheat transplants. Environ Monit Assess 101:39–53

    CAS  PubMed  Google Scholar 

  • Rebbeck J, Blum U, Heagle AS (1988) Effects of ozone on the regrowth and energy reserves of a ladino clover–tall fescue pasture. J Appl Ecol:659–681

    Article  CAS  Google Scholar 

  • Regina K, Alakukku L (2010) Greenhouse gas fluxes in varying soils types under conventional and no-illage practices. Soil Tillage Res 109:144–152

    Article  Google Scholar 

  • Ribas A, Penuelas J (2000) Effects of ethylene diurea as a protective antiozonant on beans (Phaseolus vulgaris cv Lit) exposed to different tropospheric ozone doses in Catalonia (NE Spain). Water Air Soil Poll 117:263–271

    Article  CAS  Google Scholar 

  • Rubin B, Leavitt JR, Penner D, Saettler AW (1980) Interaction of antioxidants with ozone and herbicide stress. Bull Environm Contam Toxicol 25:623–629

    Article  CAS  Google Scholar 

  • Runeckles VC, Resh HM (1975) Effects of cytokinins on responses of bean leaves to chronic ozone treatment. Atmos Environ 9:749–753

    Article  CAS  PubMed  Google Scholar 

  • Ryerson TB, Trainer M, Holloway JS, Parrish DD, Huey LG, Sueper DT, Frost GJ, Donnelly SG, Schauffler S, Atlas EL, Kuster WC (2001) Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science 292:719–723

    Article  CAS  PubMed  Google Scholar 

  • Saitanis CJ, Bari SM, Burkey KO, Stamatelopoulos D, Agathokleous E (2014) Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone. Environ Sci Pollut R 21:13560–13571

    Article  CAS  Google Scholar 

  • Saitanis CJ, Lekkas DV, Agathokleous E, Flouri F (2015) Screening agrochemicals as potential protectants of plants against ozone phytotoxicity. Environ Pollut 197:247–255

    Article  CAS  PubMed  Google Scholar 

  • Saleem A, Loponen J, Pihlaja K, Oksanen E (2001) Effects of long–term open–field ozone exposure on leaf phenolics of European silver birch (Betula pendula Roth). J Chem Ecol 27:1049–1062

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Agrawal SB (2010) Elevated ozone and two modern wheat cultivars: an assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters. Environ Exp Bot 69:328–337

    Article  CAS  Google Scholar 

  • Sarkar A, Agrawal GK, Shibato J, Cho K, Rakwal R (2012) Impacts of ozone (O3) and carbon dioxide (CO2) environmental pollutants on crops: a Transcriptomics update. INTECH Open Access Publisher:49–60

    Google Scholar 

  • Saxena P, Ghosh C (2011) Variation in the concentration of ground level ozone at selected sites in Delhi. Int J Environ Sci 1:1899–1911

    CAS  Google Scholar 

  • Selvaraj RS, Padma K, Boaz BM (2013) Seasonal variation of surface ozone and its association with meteorological parameters, UV–radiation, rainfall and cloud cover over Chennai, India. Curr Sci India 105:676–684

    CAS  Google Scholar 

  • Sharma P, Kuniyal JC, Chand K, Guleria RP, Dhyani PP, Chauhan C (2013) Surface ozone concentration and its behaviour with aerosols in the northwestern Himalaya, India. Atmos Environ 71:44–53

    Article  CAS  Google Scholar 

  • Sharma A, Sharma SK, Mandal TK (2016) Influence of ozone precursors and particulate matter on the variation of surface ozone at an urban site of Delhi, India. Sustain Environ Res:1–8

    Google Scholar 

  • Shrestha A, Grantz DA (2005) Ozone impacts on competition between tomato and yellow nutsedge. Crop Sci 45:1587–1595

    Article  CAS  Google Scholar 

  • Simon H, Reff A, Wells B, Xing J, Frank N (2014) Ozone trends across the United States over a period of decreasing NOx and VOC emissions. Environ Sci Techno l49:186–195

    Article  CAS  Google Scholar 

  • Singh S, Agrawal SB (2009) Use of ethylene diurea (EDU) in assessing the impact of ozone on growth and productivity of five cultivars of Indian wheat (Triticum aestivum L.) Environ Monit Assess 159:125–141

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Agrawal SB (2010) Impact of tropospheric ozone on wheat (Triticum aestivum L.) in the eastern Gangetic plains of India as assessed by ethylenediurea (EDU) application during different developmental stages. Agri Ecosyst Environ 138:214–221

    Article  CAS  Google Scholar 

  • Singh S, Agrawal SB (2011) Cultivar-specific response of soybean (Glycine max L.) to ambient and elevated concentrations of ozone under open top chambers. Water Air Soil Poll 217:283–302

    Article  CAS  Google Scholar 

  • Singh A, Agrawal SB, Rathore D (2005) Amelioration of Indian urban air pollution phytotoxicity in Beta vulgaris L. by modifying NPK nutrients. Environ Pollut 134:385–395

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Agrawal SB, Agrawal M (2009) Differential protection of ethylenediurea (EDU) against ambient ozone for five cultivars of tropical wheat. Environ Pollut 157:2359–2367

    Article  CAS  PubMed  Google Scholar 

  • Singh E, Tiwari S, Agrawal M (2010) Variability in antioxidant and metabolite levels, growth and yield of two soybean varieties: an assessment of anticipated yield losses under projected elevation of ozone. Agric Ecosyst Environ 135:168–177

    Article  CAS  Google Scholar 

  • Singh P, Agrawal M, Agrawal SB (2011) Differences in ozone sensitivity at different NPK levels of three tropical varieties of mustard (Brassica campestris L.): photosynthetic pigments, metabolites, and antioxidants. Water Air Soil Poll 214:435–450

    Article  CAS  Google Scholar 

  • Singh AA, Agrawal SB, Shahi JP, Agrawal M (2014a) Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone. Environ Sci Pollut R 21:2628–2641

    Article  CAS  Google Scholar 

  • Singh AA, Agrawal SB, Shahi JP, Agrawal M (2014b) Investigating the response of tropical maize (Zea mays L.) cultivars against elevated levels of O3 at two developmental stages. Ecotoxicology 23:1447–1463

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Agrawal M, Agrawal SB, Singh S, Singh A (2015a) Genotypic differences in utilization of nutrients in wheat under ambient ozone concentrations: growth, biomass and yield. Agri Ecosyst Environ 199:26–33

    Article  CAS  Google Scholar 

  • Singh AA, Singh S, Agrawal M, Agrawal SB (2015b) Assessment of ethylene diurea-induced protection in plants against ozone phytotoxicity. In: Whitacre DM (eds) Rev Environ Contam T, Springer International Publishing, 233:129–184

    Google Scholar 

  • Singla V, Satsangi A, Pachauri T, Lakhani A, Kumari KM (2011) Ozone formation and destruction at a sub–urban site in north central region of India. Atmos Res 101:373–385

    Article  CAS  Google Scholar 

  • Sinha B, Singh Sangwan K, Maurya Y, Kumar V, Sarkar C, Chandra BP, Sinha V (2015) Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements. Atmos Chem Phys 15:9555–9576

    Article  CAS  Google Scholar 

  • Six J, Ogle SM, Conant RT, Mosier AR, Paustian K (2004) The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob Chang Biol 10:155–160

    Article  Google Scholar 

  • Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agri Ecosyst Environ 133:247–266

    Article  CAS  Google Scholar 

  • Staehelin J, Thudium J, Buehler R, Volz–Thomas A, Graber W (1994) Trends in surface ozone concentrations at Arosa (Switzerland). Atmos Environ 28:75–87

    Article  CAS  Google Scholar 

  • Tang H, Takigawa M, Liu G, Zhu J, Kobayashi K (2013) A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches. Glob Chang Biol 19:2739–2752

    Article  PubMed  Google Scholar 

  • Teixeira E, Fischer G, van Velthuizen H, van Dingenen R, Dentener F, Mills G, Walter C, Ewert F (2011) Limited potential of crop management for mitigating surface ozone impacts on global food supply. Atmos Environ 45:2569–2576

    Article  CAS  Google Scholar 

  • Tiedemann AV (1996) Single and combined effects of nitrogen fertilization and ozone on fungal leaf diseases on wheat/Einzel-und Kombinationseffekte von Stickstoffdüngung und Ozon auf pilzliche Blattkrankheiten des Weizens. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz. J Plant Dis Protect 103:409–419

    Google Scholar 

  • Turcsányi E, Lyons T, Plöchl M, Barnes J (2000) Does ascorbate in the mesophyll cell walls form the first line of defence against ozone? Testing the concept using broad bean (Vicia faba L.) J Exp Bot 51:901–910

    PubMed  Google Scholar 

  • Udayasoorian C, Jayabalakrishnan RM, Suguna AR, Venkataramani S, Lal S (2013) Diurnal and seasonal characteristics of ozone and NOx over a high altitude western Ghats location in southern India. Appl Sci Res 4:309–320

    CAS  Google Scholar 

  • US EPA (2016) Ozone trends, United States Environmental Protection Agency. Accessed: 9th Sept 2016

    Google Scholar 

  • Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618

    Article  CAS  Google Scholar 

  • Varshney CK, Singh AP (2003) Isoprene emission from Indian trees. J Geophys Res Atmos 108:1–7

    Article  CAS  Google Scholar 

  • Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442

    Article  CAS  Google Scholar 

  • Wahid A (2006) Influence of atmospheric pollutants on agriculture in developing countries: a case study with three new wheat varieties in Pakistan. Sci Tot Environ 371:304–313

    Article  CAS  Google Scholar 

  • Wang X, Mauzerall DL (2004) Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos Environ 38:4383–4402

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–4

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zheng Q, Yao F, Chen Z, Feng Z, Manning WJ (2007) Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU). Environ Pollut 148:390–395

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Wei XL, Ding AJ, Poon SC, Lam KS, Li YS, Chan LY, Anson M (2009) Increasing surface ozone concentrations in the background atmosphere of southern China, 1994-2007. Atmos Chem Phys 9:6217–6227

    Article  CAS  Google Scholar 

  • Wang X, Ying Q, Hu J, Zhang H (2014) Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ Int 73:413–422

    Article  CAS  PubMed  Google Scholar 

  • Weidensaul TC (1980) N–[2–(2–Oxo–1–imidazolidinyl) ethyl–]–N0 –phenylurea as a protectant against ozone injury to laboratory fumigated pinto bean plants. Phytopathology 70:42–45

    Article  CAS  Google Scholar 

  • Welfare K, Yeo AR, Flowers TJ (2002) Effects of salinity and ozone, individually and in combination, on the growth and ion contents of two chickpea (Cicer arietinum L.) varieties. Environ Pollut 120:397–403

    Article  CAS  PubMed  Google Scholar 

  • Wenzel AA, Schlautmann H, Jones CA, Küppers K, Mehlhorn H (1995) Aminoethoxyvinylglycine, cobalt and ascorbic acid all reduce ozone toxicity in mung beans by inhibition of ethylene biosynthesis. Physiol Plantarum 93:286–290

    Article  CAS  Google Scholar 

  • Wu YX, von Tiedemann A (2001) Physiological effects of azoxystrobin and epoxiconazole on senescence and the oxidative status of wheat. Pestic Biochem Physiol 71:1–10

    Article  CAS  Google Scholar 

  • Wu YX, von Tiedemann A (2002) Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ Pollut 116:37–47

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Biswas DK, Li WD, Chen SB, Zhang L, Jiang GM, Li YG (2007) Photosynthesis and yield responses of ozone–polluted winter wheat to drought. Photosynthetica 45:582–588

    Article  CAS  Google Scholar 

  • Xu H, Chen SB, Biswas DK, Li YG, Jiang GM (2009) Photosynthetic and yield responses of an old and a modern winter wheat cultivars to short–term ozone exposure. Photosynthetica 47:247–254

    Article  CAS  Google Scholar 

  • Yadav R, Sahu LK, Beig G, Jaaffrey SN (2016) Role of long–range transport and local meteorology in seasonal variation of surface ozone and its precursors at an urban site in India. Atmos Res 176:96–107

    Article  CAS  Google Scholar 

  • Yerramsetti VS, Gauravarapu Navlur N, Rapolu V, Dhulipala NS, Sinha PR, Srinavasan S, Anupoju GR (2013) Role of nitrogen oxides, black carbon, and meteorological parameters on the variation of surface ozone levels at a tropical urban site–Hyderabad, India. Clean–Soil Air Water 41:215–225

    Article  CAS  Google Scholar 

  • Yoshida M, Nouchi I, Toyama S (1994) Studies on the role of active oxygen in ozone injury to plant cells. II. Effect of antioxidants on rice protoplasts exposed to ozone. Plant Sci 95:207–212

    Article  CAS  Google Scholar 

  • Zheng YH, Li X, Li YG, Miao BH, Xu H, Simmons M, Yang XH (2012) Contrasting responses of salinity–stressed salt–tolerant and intolerant winter wheat (Triticum aestivum L.) cultivars to ozone pollution. Plant Physiol Bioch 52:169–178

    Article  CAS  Google Scholar 

  • Zhu X, Feng Z, Sun T, Liu X, Tang H, Zhu J, Guo W, Kobayashi K (2011) Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Glob Chang Biol 17:2697–2706

    Article  Google Scholar 

  • Zhu Y, Zhao Z, Duan C, Zheng Y, Wu R (2015) Contribution rate to yield per spike of different green organs of winter wheat under ozone stress. Acta Ecol Sin 35:10–16

    Article  Google Scholar 

  • Ziemke JR, Chandra S, Labow GJ, Bhartia PK, Froidevaux L, Witte JC (2011) A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements. Atmos Chem Phys 11:9237–9251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Head, Department of Botany, coordinator CAS, Botany for necessary research facilities and to SERB (Department of Science and Technology), DST-FIST and University Grants Commission, New Delhi for providing financial support to the work. Authors are thankful to Mr. Arideep Mukherjee for providing valuable suggestions and constructive discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, A., Singh, A.A., Agrawal, M., Agrawal, S.B. (2018). Ozone Toxicity and Remediation in Crop Plants. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews 27. Sustainable Agriculture Reviews, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-75190-0_5

Download citation

Publish with us

Policies and ethics