Advertisement

Intelligent Control of Uncertain Switched Nonlinear Plants: NFG Optimum Control Synthesis via Switched Fuzzy Time-Delay Systems

  • Georgi M. Dimirovski
  • Jinming Luo
  • Huakuo Li
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 756)

Abstract

A solution to the design of intelligent, optimum guaranteed-cost and robust, control for a class of uncertain switched nonlinear systems via switched fuzzy models possessing time delays and uncertainties has been developed. Following the approach via multiple Lyapunov of Lurie-type functions, a non-fragile state feedback controller and a switching law are designed such that the closed-loop system is asymptotically stable and the guaranteed cost function possesses an upper bound. Then an optimization problem of the non-fragile guaranteed cost control is solved. The considered optimum non-fragile guaranteed-cost control problem asymptotic stability of subsystems is not assumed, nonetheless the overall system is guaranteed asymptotically stable. Numerical and simulation results for an illustrative example are presented to demonstrate the feasibility and effectiveness of the proposed intelligent control design.

Notes

Acknowledgements

This research has been funded by the National Science Foundation of P. R. China (grant No. 61174073). Also, in part it was supported by the Ministry of Education & Science of R. Macedonia (grant No. 14-3154/1). Authors are grateful to professor Jun Zhao for his co-operation and help on many occasions in the past.

References

  1. 1.
    Boyd, S.P., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in Systems and Control Theory, SIAM Studies in Applied Mathematics, vol. 15. The SIAM, Philadelphia, PA (1994)Google Scholar
  2. 2.
    Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, J., Liu, F.: Robust fuzzy control for nonlinear system with disk pole constraints. Control Decis. 22(9), 983–988 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Choi, D.J., Park, P.G.: Guaranteed cost controller design for discrete-time switching fuzzy systems. IEEE Trans. Syst. Man Cybern.: Part B Cybern. 34(1), 110–119 (2004)CrossRefGoogle Scholar
  5. 5.
    Dimirovski, G.M.: Fasciating ideas on complexity and complex systems control. In: Dimirovski, G.M. (ed.) Complex Systems—Relationships between Control, Communications and Computing, Studies in Systems, Decision and Control, vol. 55, vi–xxxix. Springer International Publishing AG Switzerland, Cham, CH (2016)Google Scholar
  6. 6.
    Dayawansa, W.P., Martin, C.F.: A converse Laypunov theorem for a class of dynamical systems which undergo switching. IEEE Trans. Autom. Control 44(4), 751–760 (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dimirovski, G.M., Luo, J., Li, H., Zhao, J.: Intelligent control of uncertain switched nonlinear plants: NGF optimum control of switched time-delay fuzzy systems revisited. In: Proceedings ISO2016 of the IEEE International Conference on Intelligent Systems, Sofia, Bulgaria, 4–6 September 2016, pp. 510–515. Bulgarian IM/CS/SMC Society on behalf of the IEEE, Piscatawy, NJ, Sofia, BG (2016)Google Scholar
  8. 8.
    Dimirovski, G.M., Gough, N.E., Barnett, S.: Categories in systems and control. Int. J. Syst. Sci. 8(9), 1081–1090 (1977)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: The LMI Tool Box. The MathWorks, Inc., Natick, NJ (1995)Google Scholar
  10. 10.
    Huang, D., Nguang, S.K., Patel, N.: Fuzzy control of uncertain nonlinear networked control systems with random time-delays. In: Proceedings of the 27th American Control Conference, New York City, NY, 11–13 July 2007, pp. 299–304. IEEE on behalf of the AACC, Piscataway, NJ (2007)Google Scholar
  11. 11.
    Krassovskiy, N.N.: Towards the theory of optimal control (in Russian). Avtomatika i Telemekhanika 18(11), 960–970 (1957)Google Scholar
  12. 12.
    Li, L.-L., Zhao, J., Dimirovski, G.M.: Multiple Lyapunov functions approach to observer-based Hinf control for switched systems. Int. J. Syst. Sci. 44(5), 812–819 (2013)Google Scholar
  13. 13.
    Luo, J., Dimirovski, G.M.: Intelligent ontrol for switched fuzzy systems: synthesis via nonstandard Lyapunov functions. In: Sgurev, V., Hadjiski, M., Kacprzyk, J., Atanassov, K. (eds.) Studies in Computational Intelligence, vol. 657, pp. 115–141. Springer, Berlin, Heidelberg (2017)Google Scholar
  14. 14.
    Luo, J., Dimirovski, G.M., Zhao, J.: Non-fragile guaranteed-cost control for a class of switched systems. In: Proceedings of the 31st Chinese Control Conference, Hefei, CN, 25–27 July 2012, pp. 2112–2116. Technical Committee on Control Theory, the CAA, Beijing, CN (2012)Google Scholar
  15. 15.
    Luo, J., Dimirovski, G.M., Zhao, J.: Non-fragile guaranteed-cost control for a class of switched systems. In: Proceedings of the 32nd Chinese Control Conference, Xi’an, CN, 26–28 July 2013, pp. 2174–2179. Technical Committee on Control Theory, the CAA, Beijing, CN (2013)Google Scholar
  16. 16.
    Lurie, A.I.: Some Nonlinear Problems of the Automatic Control Theory (in Russian). Gostehizdat, Moskva – Lningrad (1951)Google Scholar
  17. 17.
    MathWorks: MATLAB. The MathWorks, Inc., Natick, NJ (1994)Google Scholar
  18. 18.
    Meyer, K.R.: Liapunov function for the problem of Lurie. Proc. Natl. Acad. Sci. USA 53, 501–503 (1965)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ojleska, V., Kolemisevska-Gugulovska, T., Dimirovsky, G.: Recent advances in analysis and design for switched fuzzy systems: a review. In: Proceedings of the 6th IEEE International Conference on Intelligent Systems IS2012, Sofia, BG, 6–8 September 2012, pp. 248–257. Bulgarian IM/CS/SMC Society on behalf of the IEEE, Piscataway, NJ, Sofia, BG (2012)Google Scholar
  20. 20.
    Ojleska, V.M., Kolemisevska-Gugulovska, T.D., Dimirovski, G.M.: Influence of the state space partitioning into regions when designing switched fuzzy controllers. I Facta Univ. Ser. Autom. Control Robot. 9(1), 131–139 (2010)Google Scholar
  21. 21.
    Ojleska, V.M., Kolemisevska-Gugulovska, T.D., Dimirovski, G.M.: Switched fuzzy control systems: exploring the performance in applications. Int. J. Simul.: Syst. Sci. Technol. 12(2), 19–29 (2011)Google Scholar
  22. 22.
    Park, J.H., Jung, H.Y.: On the design of non-fragile guaranteed cost controller for a class of uncertain dynamic systems with state delays. Appl. Math. Comput. 150(1), 245–257 (2004)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Ren, J.S.: Non-fragile LQ fuzzy control for a class of non-linear descriptor system with time delays. In: Proceedings of the 4th International Conference on Machine Learning and Cybernetics, Guangzhou, 18–21 August 2005, pp. 1121–1126. The Institute of Automation, CAS, Beijing, CN (2005)Google Scholar
  24. 24.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)Google Scholar
  25. 25.
    Tanaka, K., Wang, H.O.: Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York, NY (2001)CrossRefGoogle Scholar
  26. 26.
    Wang, F.-Y.: Computational experiments for behaviour analysis and decision evaluation of complex systems. J. Syst. Simul. 16(5), 893–897 (2004)Google Scholar
  27. 27.
    Wang, J.L., Shu, Z.X., Chen, L., Wang, Z.X.: Non-fragile fuzzy guaranteed cost control of uncertain nonlinear discrete-time systems. In: Proceedings of the 26th Chinese Control Conference, Zhangjiajie, Hunan, CN, 26–31 July 2007, pp. 2111–2116. The CAA, Technical Committee on Control Theory, CAS, Beijing (2007)Google Scholar
  28. 28.
    Wang, R., Zhao, J.: Non-fragile hybrid guaranteed cost control for a class of uncertain switched linear systems. J. Control Theory Appl. 1, 32–37 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, W.J., Kao, C.C., Chen, C.S.: Stabilization, estimation and robustness for large-scale time-delay systems. Control Theory Adv. Technol. 7, 569–585 (1991)MathSciNetGoogle Scholar
  30. 30.
    Wang, H.O., Tanaka, K., Griffin, M.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (2006)CrossRefGoogle Scholar
  31. 31.
    Wang, R., Feng, J.X., Zhao, J.: Design methods of non-fragile controllers for a class of uncertain switched linear systems. Control Decis. 21(7), 321–326 (2006)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Yakubovich, V.A.: Solution to some matrix inequalities occuring in the theory of automatic control (in Russian). Dokladi akademii nauk SSSR 143(6), 1304–1307 (1962)Google Scholar
  33. 33.
    Yakubovich, V.A.: Solution to some matrix inequalities occuring in the nonlinear theory of control (in Russian). Dokladi akademii nauk SSSR 156(2), 271–281 (1964)Google Scholar
  34. 34.
    Yakubovich, V.A.: S-procedure in the nonlinar control theory (in Russian). Vestnik Leningradskogo Universiteta, Seriyua Mathematika, mekhanika, astronomiya 1, 62–77 (1971)zbMATHGoogle Scholar
  35. 35.
    Yakubovich, V.A.: Maximum principle in the optimization problem of controllers (in Russin). Vestnik Leningradskogo Universiteta, Seriyua Mathematika, mekhanika, astronomiya 7, 55–68 (1980)Google Scholar
  36. 36.
    Yang, H., Dimirovski, G.M., Zhao, J.: Switched fuzzy systems: representation modelling, stability analysis, and control design. In: Kacprzyk, J. (ed.) Studies in Computational Intelligence—Intelligent Techniques and Tool for Novel Systems Architectures, vol. 109, pp. 169–184. Springer, Berlin, Heidelberg (2008)Google Scholar
  37. 37.
    Yee, J.S., Yang, G.H., Wang, J.L.: Non-fragile guaranteed cost for discrete-time uncertain linear systems. Int. J. Syst. Sci. 32(7), 845–853 (2001)Google Scholar
  38. 38.
    Yin, P.Q., Yu, L., Zheng, K.: T-S model based non-fragile guaranteed cost fuzzy control for nonlinear time-delay systems. Control Theory Appl. 25(1), 38–44 (2008)Google Scholar
  39. 39.
    Zadeh, L.A.: A rationale for fuzzy control. J. Dyn. Syst. Meas. Control Trans. ASME Ser. G 94(1), 3–4 (1972)Google Scholar
  40. 40.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3(1), 28–44 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Zadeh, L.A.: Is there a need for fuzzy logic? Inf. Sci. 178, 2751–2779 (2008)Google Scholar
  42. 42.
    Zhao, J., Dimirovski, G.M.: Quadratic stability of a class of switched nonlinear systems. IEEE Trans. Autom. Control 49(4), 574–578 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Zhao, J., Hill, D.J.: On stability, L2-gain and Hinf-control for switched systems. Automatica 44, 1220–1232 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Georgi M. Dimirovski
    • 1
    • 2
  • Jinming Luo
    • 3
  • Huakuo Li
    • 3
  1. 1.Faculty of Electrical Engineering and Information TechnologiesSt. Cyril and St. Methodius UniversitySkopjeRepublic of Macedonia
  2. 2.Faculty of EngineeringDogus University of Istanbul AcibademIstanbulTurkey
  3. 3.State Key Laboratory of Synthetic AutomationNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations