PhotoNoCs: Design Simulation Tool for Silicon Integrated Photonics Towards Exascale Systems

  • Juan-Jose Crespo
  • Francisco J. Alfaro-Cortés
  • José L. Sánchez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10659)


The need to greatly increase the number of compute nodes to design exascale systems raises numerous challenges that must be solved to obtain an efficient system in terms of cost, energy consumption and performance. Data movement is a critical barrier toward realizing exascale computing systems, and therefore the interconnection network is a key component of these systems. Among the different technologies that could contribute to an efficient interconnect, photonics is perhaps the most disruptive, due to its capabilities to generate, transmit, and receive high bandwidth signals with superior power efficiencies and inherent immunity to degradation. However, photonic interconnects lack from practical buffering, which make these networks circuit switched in its essence. Therefore, new network architectures are required, both to satisfy the requirements of data transfers between nodes and between the multiple computing resources of each multicore node. This paper presents PhotoNoCs as a tool which helps the computer architect to design and test new approaches of photonics interconnection systems at different levels: On-chip networks for multicore architectures and off-chip networks for the whole supercomputer.


Photonics SiP On-chip Exascale 



This work has been supported by the Spanish MECD and European Commission (FEDER funds) under the project TIN2015-66972-C5-2-R; and by the JCCM under the project PEII-2014-028-P. Juan-Jose Crespo is also funded by the Spanish MECD under national grant (FPU) FPU15/03627.


  1. 1.
    Beausoleil, R.G., Ahn, J., Binkert, N., Davis, A., Fattal, D., Fiorentino, M., Jouppi, N.P., McLaren, M., Santori, C., Schreiber, R.S., et al.: A nanophotonic interconnect for high-performance many-core computation. In: 16th IEEE Symposium on High Performance Interconnects, HOTI 2008, pp. 182–189. IEEE (2008)Google Scholar
  2. 2.
    Chan, J., Hendry, G., Biberman, A., Bergman, K., Carloni, L.P.: PhoenixSim: a simulator for physical-layer analysis of chip-scale photonic interconnection networks. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 691–696. European Design and Automation Association (2010)Google Scholar
  3. 3.
    Chang, S.J., Ni, C.Y., Wang, Z., Chen, Y.J.: A compact and low power consumption optical switch based on microrings. IEEE Photonics Technol. Lett. 20(12), 1021–1023 (2008)CrossRefGoogle Scholar
  4. 4.
    Crespo, J.J., Alfaro Cortes, F.J., Sanchez Garcia, J.L.: PhotoNoCs: un simulador de redes ópticas para CMPs. Jornadas de Paralelismo, pp. 509–516 (2015). ISBN: 978-84-16017-52-2Google Scholar
  5. 5.
    Goebuchi, Y., Hisada, M., Kato, T., Kokubun, Y.: Optical cross-connect circuit using hitless wavelength selective switch. Opt. Express 16(2), 535–548 (2008)CrossRefGoogle Scholar
  6. 6.
    Goebuchi, Y., Kato, T., Kokubun, Y.: Multiwavelength and multiport hitless wavelength-selective switch using series-coupled microring resonators. IEEE Photonics Technol. Lett. 19(9), 671–673 (2007)CrossRefGoogle Scholar
  7. 7.
    Kaźmierczak, A., Drouard, E., Briere, M., Rojo-Romeo, P., Letartre, X., O’Connor, I., Gaffiot, F., Lisik, Z.: Optimization of an integrated optical crossbar in SOI technology for optical networks on chip. J. Telecommun. Inf. Technol. 109–114 (2007)Google Scholar
  8. 8.
    Koester, S.J., Schow, C.L., Schares, L., Dehlinger, G., Schaub, J.D., Doany, F.E., John, R.A.: Ge-on-SOI-detector/Si-CMOS-amplifier receivers for high-performance optical-communication applications. J. Lightwave Technol. 25(1), 46–57 (2007)CrossRefGoogle Scholar
  9. 9.
    Little, B., Chu, S., Pan, W., Kokubun, Y.: Microring resonator arrays for VLSI photonics. IEEE Photonics Technol. Lett. 12(3), 323–325 (2000)CrossRefGoogle Scholar
  10. 10.
    Shacham, A., Bergman, K., Carloni, L.P.: On the design of a photonic network-on-chip. In: Proceedings of the First International Symposium on Networks-on-Chip, pp. 53–64. IEEE Computer Society (2007)Google Scholar
  11. 11.
    Sherwood-Droz, N., Wang, H., Chen, L., Lee, B.G., Biberman, A., Bergman, K., Lipson, M.: Optical \(4\times 4\) hitless silicon router for optical Networks-on-Chip (NoC). Opt. Express 16(20), 15915–15922 (2008)CrossRefGoogle Scholar
  12. 12.
    Soref, R.A., Little, B.E.: Proposed N-wavelength M-fiber WDM crossconnect switch using active microring resonators. IEEE Photonics Technol. Lett. 10(8), 1121–1123 (1998)CrossRefGoogle Scholar
  13. 13.
    Vlasov, Y., Green, W.M., Xia, F.: High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photonics 2(4), 242–246 (2008)CrossRefGoogle Scholar
  14. 14.
    Watts, M.R., Trotter, D.C., Young, R.W., Lentine, A.L.: Ultralow power silicon microdisk modulators and switches. In: 2008 5th IEEE International Conference on Group IV Photonics, pp. 4–6. IEEE (2008)Google Scholar
  15. 15.
    Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J., Lipson, M.: 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Optics Express 15(2), 430–436 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Juan-Jose Crespo
    • 1
  • Francisco J. Alfaro-Cortés
    • 1
  • José L. Sánchez
    • 1
  1. 1.High-Performance Networks and Architectures (RAAP) GroupUniversity of Castilla-La ManchaAlbaceteSpain

Personalised recommendations