Multi-objective Service Oriented Network Provisioning in Ultra-Scale Systems

  • Dragi Kimovski
  • Sashko Ristov
  • Roland Mathá
  • Radu Prodan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10659)


The paradigm of ultra-scale computing has been recently pushed forward by the current trends in distributed computing. This novel architecture concept is focused towards a federation of multiple geographically distributed heterogeneous systems under a single system image, thus allowing efficient deployment and management of very complex architectures applications. To enable sustainable ultra-scale computing, there are multiple major challenges, which have to be tackled, such as, improved data distribution, increased systems scalability, enhanced fault tolerance, elastic resource management, low latency communication and etc. Regrettably, the current research initiatives in the area of ultra-scale computing are in a very early stage of research and are predominantly concentrated on the management of the computational and storage resources, thus leaving the networking aspects unexplored. In this paper we introduce a promising new paradigm for cluster-based Multi-objective service-oriented network provisioning for ultra-scale computing environments by unifying the management of the local communication resources and the external inter-domain network services under a single point of view. We explore the potentials for representing the local network resources within a single distributed or parallel system and combine them together with the external communication services.


Inter-domain network provisioning Multi-objective optimization Machine learning 



This work is being accomplished as a part of project ENTICE: “dEcentralised repositories for traNsparent and efficienT vIrtual maChine opErations”, funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 644179.


  1. 1.
    Mihajlovic, M., Bongo, L., Ciegis, R., Frasheri, N., Kimovski, D., Kropf, P., Margenov, S., Neytcheva, M., Rauber, T., Runger, G., Trobec, R., Wuyts, R., Wyrzykowski, R., Gong, J.: Applications for ultra-scale computing. Supercomput. Front. Innov. 2(1), 19–48 (2015)Google Scholar
  2. 2.
    Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How to enhance cloud architectures to enable cross-federation. In: IEEE CLOUD (2010)Google Scholar
  3. 3.
    Vincenzo, M., Rizzo, L., Lettieri, G.: Flexible virtual machine networking using netmap passthrough. In: IEEE Symposium on Local and Metropolitan Area Networks (2016)Google Scholar
  4. 4.
    Moreno-Vozmediano, R., et al.: BEACON: a cloud network federation framework. In: Celesti, A., Leitner, P. (eds.) ESOCC 2015. CCIS, vol. 567, pp. 325–337. Springer, Cham (2016). CrossRefGoogle Scholar
  5. 5.
    Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)CrossRefGoogle Scholar
  6. 6.
    Araujo, W., Granville, L.Z., Schneider, F., Dudkowski, D., Brunner, M.: Rethinking cloud platforms: network-aware flexible resource allocation in IaaS clouds. In: IFIP/IEEE Symposium on Integrated Network Management (2013)Google Scholar
  7. 7.
    Bo, P., Hammad, A., Nejabati, R., Azodolmolky, S., Simeonidou, D., Reijs, V.: A network virtualization framework for IP infrastructure provisioning. In: IEEE Conference on Cloud Computing Technology and Science (2011)Google Scholar
  8. 8.
    Jon, M., Jacob, E., Sanchez, D., Demchenko, Y.: An OpenFlow based network virtualization framework for the cloud. In: IEEE Conference on Cloud Computing Technology and Science (2011)Google Scholar
  9. 9.
    Meng, S., Xu, K., Li, F., Yang, K., Zhu, L., Guan, L.: Elastic and efficient virtual network provisioning for cloud-based multi-tier applications. In: Conference in Parallel Processing - ICPP (2015)Google Scholar
  10. 10.
    Ines, H., Louati, W., Zeghlache, D., Papadimitriou, P., Mathy, L.: Adaptive virtual network provisioning. In: ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and Architectures (2010)Google Scholar
  11. 11.
    Jeffrey, M., Popa, L.: What we talk about when we talk about cloud network performance. ACM SIGCOMM Comput. Commun. Rev. 42(5), 44–48 (2012)CrossRefGoogle Scholar
  12. 12.
    Branke, J., et al. (eds.): Multiobjective Optimization: Interactive and Evolutionary Approaches, vol. 5252. Springer, Heidelberg (2008). zbMATHGoogle Scholar
  13. 13.
    Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)CrossRefGoogle Scholar
  14. 14.
    Garner, S.R.: Weka: the waikato environment for knowledge analysis. In: New Zealand Computer Science Research Students Conference (1995)Google Scholar
  15. 15.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  16. 16.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    RIPE Network Coordination Centre.
  18. 18.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dragi Kimovski
    • 1
  • Sashko Ristov
    • 1
  • Roland Mathá
    • 1
  • Radu Prodan
    • 1
  1. 1.Distributed and Parallel Systems, Institute of InformaticsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations