Skip to main content

Complexity of the Maximum k-Path Vertex Cover Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10755))

Abstract

This paper introduces the maximum version of the k-path vertex cover problem, called the Maximum k-Path Vertex Cover problem (\(\mathsf{{Max}}{P_k}\mathsf{VC}\) for short): A path consisting of k vertices, i.e., a path of length \(k-1\) is called a k-path. If a k-path \(P_k\) includes a vertex v in a vertex set S, then we say that S or v covers \(P_k\). Given a graph \(G = (V, E)\) and an integer s, the goal of \(\mathsf{{Max}}{P_k}\mathsf{VC}\) is to find a vertex subset \(S\subseteq V\) of at most s vertices such that the number of k-paths covered by S is maximized. \(\mathsf{{Max}}{P_k}\mathsf{VC}\) is generally NP-hard. In this paper we consider the tractability/intractability of \(\mathsf{{Max}}{P_k}\mathsf{VC}\) on subclasses of graphs: We prove that \(\mathsf{{Max}}{P_3}\mathsf{VC}\) and \(\mathsf{{Max}}{P_4}\mathsf{VC}\) remain NP-hard even for split graphs and for chordal graphs, respectively. Furthermore, if the input graph is restricted to graphs with constant bounded treewidth, then \(\mathsf{{Max}}{P_3}\mathsf{VC}\) can be solved in polynomial time.

This work is partially supported by JSPS KAKENHI Grant Numbers JP16K16006, JP17H06287, JP17K00016, JP24106004, JP26330009, and JST CREST JPMJCR1402.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Apollonio, N., Simeone, B.: The maximum vertex coverage problem on bipartite graphs. Dis. Appl. Math. 165, 37–48 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Betzler, N., Niedermeier, R., Uhlmann, J.: Tree decompositions of graphs: saving memory in dynamic programming. Dis. Optim. 3, 220–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hans, L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A \({O}(c^k n)\) 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brešar, B., Kardoš, F., Katrenič, J., Semanišin, G.: Minimum k-path vertex cover. Dis. Appl. Math. 159(12), 1189–1195 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Camby, E.: Connecting hitting sets and hitting paths in graphs. Ph.D. thesis, Doctoral Thesis (2015)

    Google Scholar 

  7. Caskurlu, B., Mkrtchyan, V., Parekh, O., Subramani, K.: On partial vertex cover and budgeted maximum coverage problems in bipartite graphs. In: IFIP International Conference on Theoretical Computer Science, pp. 13–26. Springer, Heidelberg (2014)

    Google Scholar 

  8. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of Theoretical Computer Science, vol. B, pp. 193–242 (1990)

    Google Scholar 

  9. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karp, R.: Reducibility among combinatorial problems. In: Compleixty of Computer Computations, pp. 85–103 (1972)

    Google Scholar 

  11. Katrenič, J.: A faster FPT algorithm for 3-path vertex cover. Inf. Process. Lett. 116(4), 273–278 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, X., Zhang, Z., Huang, X.: Approximation algorithms for minimum (weight) connected k-path vertex cover. Dis. Appl. Math. 205, 101–108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Papadimitriou, C.H., Yannakakis, M.: The complexity of restricted spanning tree problems. J. ACM 29(2), 285–309 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jianhua, T., Jin, Z.: An FPT algorithm for the vertex cover P4 problem. Dis. Appl. Math. 200, 186–190 (2016)

    Article  MATH  Google Scholar 

  15. Jianhua, T., Zhou, W.: A factor 2 approximation algorithm for the vertex cover P3 problem. Inf. Process. Lett. 111(14), 683–686 (2011)

    Article  MATH  Google Scholar 

  16. Jianhua, T., Zhou, W.: A primal-dual approximation algorithm for the vertex cover P3 problem. Theor. Comput. Sci. 412(50), 7044–7048 (2011)

    Article  MATH  Google Scholar 

  17. Xiao, M., Kou, S.: Exact algorithms for the maximum dissociation set and minimum 3-path vertex cover problems. Theor. Comput. Sci. 657, 86–97 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput. 10, 310–327 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, Z., Li, X., Shi, Y., Nie, H., Zhu, Y.: PTAS for minimum k-path vertex cover in ball graph. Inf. Process. Lett. 119, 9–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Yagita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miyano, E., Saitoh, T., Uehara, R., Yagita, T., van der Zanden, T.C. (2018). Complexity of the Maximum k-Path Vertex Cover Problem. In: Rahman, M., Sung, WK., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2018. Lecture Notes in Computer Science(), vol 10755. Springer, Cham. https://doi.org/10.1007/978-3-319-75172-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75172-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75171-9

  • Online ISBN: 978-3-319-75172-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics