Skip to main content

(LNG) Arbitrage, Intertemporal Market Equilibrium and (Political) Uncertainty

  • Chapter
  • First Online:
Control Systems and Mathematical Methods in Economics

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 687))

  • 709 Accesses

Abstract

Since 2009, natural gas markets are characterized by large spreads in liquefied natural gas (LNG) prices between the United States (Henry hub) and Europe and Japan. Moreover these differences are forecasted to persist (at a lower level but still above transport costs) against the law of one price. This paper explores this persistence of apparent arbitrage by investigating an intertemporal competitive equilibrium under uncertainty. Investments of an individual arbitrageur must account (at least) for: (1) rational expectation that this arbitrage will be eroded over time by competitive agents’ similar investments; (2) risk of export regulations because governments may intervene and destroy this opportunity in order to protect the interest of local (i.e. U.S.) firms and consumers. The paper analyzes a corresponding stochastic and dynamic (partial) equilibrium that leads to a reduction in investments and implies persistence of apparent arbitrage. This is in line with forecasted but unexplained price differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Liquefaction costs have substantially decreased over the past 10 years to below US$200 per ton of annual liquefaction capacity, US Energy Information Administration (2003).

References

  • BP, BP Statistical Review of World Energy June 2015 (2015). https://bp.com/statisticalreview

  • E. Crivelli, S. Gupta, Resource blessing, revenue curse? Domestic revenue effort in resource-rich countries. Eur. J. Polit. Econ. 35, 88–101 (2014)

    Google Scholar 

  • J. Dehnavi, F. Wirl, Y. Yuri, Arbitrage in natural gas markets. Int. J. Energy Stat. 3(4) (2015). https://doi.org/10.1142/S2335680415500180

  • D. Grass, J.P. Caulkins, G. Feichtinger, G. Tragler, D.A. Behrens, Optimal Control of Nonlinear Processes: With Applications in Drugs, Corruption and Terror (Springer, Heidelberg, 2008)

    Google Scholar 

  • International Energy Agency, World Energy Outlook 2013 (OECD, Paris, 2013)

    Google Scholar 

  • International Energy Agency, World Energy Outlook 2014 (OECD, Paris, 2014)

    Google Scholar 

  • I. Kamien Morton, L. Nancy, N.L. Schwartz, Optimal maintenance and sale age for a machine subject to failure. Manag. Sci. 17, 427–449 (1971)

    Google Scholar 

  • N. Kleit Andrew, Did open access integrate natural gas markets? An arbitrage cost approach. J. Regul. Econ. 14, 19–33 (1998)

    Google Scholar 

  • R. La Porta, F. Lopez-de-Silanes, A. Shleifer, R. Vishny, Legal determinants of external finance. J. Financ. 52(3), 1131–1150 (1997)

    Google Scholar 

  • M.A. Levi, The geopolitics of natural gas. Natural gas in the United States. WP of James A. Baker III Institute for Public Policy, Rice University, 23 October, 2013

    Google Scholar 

  • D. Maxwell, Z. Zhu, Natural gas prices, LNG transport costs, and the dynamics of LNG imports. Energy Econ. 33, 217–226 (2011)

    Google Scholar 

  • H.V. Rogers, J. Stern, Challenges to JCC pricing in Asian LNG markets, OIES Paper: NG 81, 2014

    Google Scholar 

  • US Energy Information Administration, The global liquefied natural gas market: status and outlook, Report #: DOE/EIA-0637, Release Date: December 2003

    Google Scholar 

  • C. von Hirschhausen, A. Neumann, Long-term contracts and asset specificity revisited: an empirical analysis of producer–importer relations in the natural gas industry. Rev. Ind. Organ. 32, 131–143 (2008)

    Google Scholar 

  • J.G. Weber, A decade of natural gas development: the makings of a resource curse? Resour. Energy Econ. 37, 168–183 (2014)

    Google Scholar 

  • Y. Yegorov, J. Dehnavi, Future of shale gas in China and its influence on the global markets for natural gas, Available at SSRN 2524357, 2014

    Google Scholar 

Download references

Acknowledgements

I acknowledge helpful discussions about the LNG market with Yuri Yegorov and Jalal Dehnavi and comments from an anonymous referee. A very first draft of the paper was presented at World Congress of the International Association of Energy Economists, June 16th–18th 2014, New York and I thank the participants for their helpful comments.

Appendix: Declining Hazard, h < 0

No particular property of h was used up to Eq. (18). Specifics of h enter only with the determination of \(S\left ( T\right ) \) in (17) and then for the linear choice as in the example (8). Thus using the same example (8) with the only modification of a linearly declining hazard rate,

$$\displaystyle \begin{aligned} h=\alpha \left( 1-X\right) \end{aligned}$$

some of the explicit calculations change,

$$\displaystyle \begin{aligned} \begin{array}{rcl} \dot{F} &\displaystyle =&\displaystyle \alpha \left( 1-x_{T}\right) \left( 1-F\right) \\ &\displaystyle \Longrightarrow &\displaystyle F\left( t\right) =1-\left( 1-F_{T}\right) e^{-h\left( x_{T}\right) \left( t-T\right) }=1-\left( 1-F_{T}\right) e^{-\alpha \left( 1-x_{T}\right) \left( t-T\right) } \\ S\left( x\left( T\right) ,T\right) &\displaystyle =&\displaystyle A\left( X\left( T\right) \right) x\left( T\right) \underset{0}{\overset{\infty }{\int }}e^{-rt}\left( 1-F\left( t\right) \right) dt \\ &\displaystyle =&\displaystyle A\left( x_{T}\right) x_{T}\left( 1-F_{T}\right) \underset{0}{\overset{ \infty }{\int }}e^{-\left( r+\alpha \left( 1-x_{T}\right) \right) t}dt=\frac{ A\left( x_{T}\right) x_{T}\left( 1-F_{T}\right) }{r+\alpha \left( 1-x_{T}\right) }. \end{array} \end{aligned} $$

Reformulated as a stopping problem, the optimal stopping conditions are:

$$\displaystyle \begin{aligned} \begin{array}{rcl} \lambda \left( T\right) &\displaystyle =&\displaystyle S_{x}=\frac{A\left( x_{T}\right) \left( 1-F\right) }{r+\alpha \left( 1-x_{T}\right) } \\ H\left( T\right) &\displaystyle =&\displaystyle rS-\frac{\partial S}{\partial T} \\ \frac{\partial S}{\partial T} &\displaystyle =&\displaystyle -\frac{A\left( x_{T}\right) x_{T}}{r+\alpha \left( 1-x_{T}\right) }\frac{\partial F}{\partial T} \end{array} \end{aligned} $$
$$\displaystyle \begin{aligned} \frac{\partial F}{\partial t}=-\left( 1-F\right) \frac{\partial }{\partial t} e^{-\alpha \left( 1-x\left( T\right) \right) \left( t-T\right) }=\alpha \left( 1-X\right) \left( 1-F\right) e^{-\alpha X\left( t-T\right) }\mid _{t=T}=\alpha \left( 1-X\right) \left( 1-F\right) \end{aligned}$$
$$\displaystyle \begin{aligned}\begin{array}{rcl} H &\displaystyle =&\displaystyle A\left( X\right) x\left( 1-F\right) -k\left( u\right) +\frac{A\left( X\right) \left( 1-F\right) }{r+\alpha \left( 1-X\right) }u\text{ at }t=T, \\ rS-\frac{\partial S}{\partial T} &\displaystyle =&\displaystyle \frac{A\left( x_{T}\right) x_{T}\left( 1-F_{T}\right) r}{r+\alpha \left( 1-x_{T}\right) }+\frac{A\left( x_{T}\right) x_{T}\alpha \left( 1-X\right) \left( 1-F\right) }{r+\alpha \left( 1-x_{T}\right) } \\ &\displaystyle =&\displaystyle \frac{A\left( x_{T}\right) x_{T}\left( 1-F_{T}\right) \left( r+\alpha \left( 1-X\right) \right) }{r+\alpha \left( 1-x_{T}\right) }=Ax\left( 1-F\right) \text{ at }t=T. \end{array} \end{aligned} $$

Therefore,

$$\displaystyle \begin{aligned} Ax_{T}\left( 1-F_{T}\right) -k\left( u\right) +\frac{A\left( 1-F_{T}\right) }{r+\alpha \left( 1-X\right) }u=Ax_{T}\left( 1-F_{T}\right) \end{aligned}$$

which holds for \(u\left ( T\right ) =0\). As a consequence, the corresponding stopping condition,

$$\displaystyle \begin{aligned} \lambda \left( T\right) =\frac{A\left( x_{T}\right) \left( 1-F\right) }{ r+\alpha \left( 1-x_{T}\right) }=k^{\prime }\left( 0\right) , \end{aligned}$$

is similar

$$\displaystyle \begin{aligned} A\left( 1-F\right) =\left( r+\alpha \left( 1-x_{T}\right) \right) k. \end{aligned}$$

Figures 7 and 8 are the counterparts of Figs. 2 and 4 highlighting the similarity in spite of the opposite assumptions of either h  > 0 or h  < 0.

Fig. 7
figure 7

Counterpart of Fig. 2 for declining hazard rate, h = α(1 − x): Determination of capacity: deterministic (steady state) vs stochastic (maximum, i.e. in case of no prior intervention) for F fixed at terminal value

Fig. 8
figure 8

Counterpart of Fig. 4 for declining hazard rate, h = α(1 − x) Time paths (assuming no intervention prior to T), reference example: α = 0.1, κ = 2, γ = 10, r = 0.1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Wirl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wirl, F. (2018). (LNG) Arbitrage, Intertemporal Market Equilibrium and (Political) Uncertainty. In: Feichtinger, G., Kovacevic, R., Tragler, G. (eds) Control Systems and Mathematical Methods in Economics. Lecture Notes in Economics and Mathematical Systems, vol 687. Springer, Cham. https://doi.org/10.1007/978-3-319-75169-6_12

Download citation

Publish with us

Policies and ethics