Advertisement

Generalized Parameter Extraction Method for Symbolic Analysis of Analog Circuits Containing Pathological Elements

  • Vladimir Filaretov
  • Konstantin Gorshkov
  • Sergey Kurganov
  • Maxim Nedorezov
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 479)

Abstract

This chapter gives a description of the extension of Generalized Parameter Extraction Method (GPEM) for symbolic analysis of large-scale analog circuits containing pathological elements. The brief overview of the parameter extraction approach is included. An algorithm implementing the concept of Higher Order Summative Cofactors (HOSC) for determinants computation of the pathological element-based circuits is proposed. In this chapter, we also present the hierarchical decomposition techniques of upward and downward analysis of electronic circuits by GPEM. The proposed techniques are used in freeware symbolic analyzer CirSym. Several examples are presented to illustrate the advantages of the GPEM applications.

Notes

Acknowledgements

This work was supported in part by the Russian Foundation for Basic Research (RFBR) under grant No. 15-07-05847; in part by Government of Russian Federation under grant No. 074-U01. The authors thank especially Dr. G. Mayko from Broadcom corporation for help in improving the readability and technical presentation of this article.

References

  1. 1.
    Balik F, Rodanski B (2004) Calculation of symbolic sensitivities for large-scale circuits in the sequence of expressions form via the transimpedance method. Analog Integr Circ Sig Process 40(3):265–276.  https://doi.org/10.1023/B:ALOG.0000034828.36771.e3CrossRefGoogle Scholar
  2. 2.
    Tlelo-Cuautle E, Sánchez-López C, Martínez-Romero E, Tan SX-D (2010) Symbolic analysis of analog circuits containing voltage mirrors and current mirrors. Analog Integr Circuits Signal Process 65(1):89–95.  https://doi.org/10.1007/s10470-010-9455-yCrossRefGoogle Scholar
  3. 3.
    Fakhfakh M, Tlelo-Cuautle E, Fernández FV (eds) (2012) Design of analog circuits through symbolic analysis. Bentham Science Publishers (e-Books), Oak ParkGoogle Scholar
  4. 4.
    Guerra O, Roca E, Fernández FV, Rodríguez-Vázquez A (2002) Approximate symbolic analysis of hierarchically decomposed analog circuits. Analog Integr Circuits Signal Process 31(2):131–145.  https://doi.org/10.1023/A:1015094011107CrossRefGoogle Scholar
  5. 5.
    Hamedi-Hagh S (2016) Characterization of active inductors with modified determinant expansion analysis. In: Proceedings of IEEE Dallas circuits and systems conference (DCAS-2016), Dallas, USA. pp 1–4.  https://doi.org/10.1109/dcas.2016.7791131
  6. 6.
    Pierzchala M, Rodanski B (2001) Generation of sequential symbolic network functions for large scale networks by circuit reduction two-port. IEEE Trans Circuits Syst I Fundam Theory Appl 48(7):906–909.  https://doi.org/10.1109/81.933334
  7. 7.
    Sanchez-Lopez C, Fernandez FV, Tlelo-Cuautle E, Tan SX-D (2011) Pathological element-based active device models and their application to symbolic analysis. IEEE Trans Circuits Syst I Regul Pap 58(6):1382–1395. https://doi.org/10.1109/tcsi.2010.2097696
  8. 8.
    Sanchez-Lopez C (2013) Pathological equivalents of fully-differential active devices for symbolic nodal analysis. IEEE Trans Circuits Syst–I Regul Pap. 60(6):603–615  https://doi.org/10.1109/tcsi.2013.2244271
  9. 9.
    Sánchez-López C, Cante-Michcol B, Morales-López FE, Carrasco-Aguilar MA (2013) Pathological equivalents of CMs and VMs with multi-outputs. Analog Integr Circuits Signal Process 75(1):75–83.  https://doi.org/10.1007/s10470-012-0003-9CrossRefGoogle Scholar
  10. 10.
    Shi G, Tan SX-D, Tlelo-Cuautle E (2014) Advanced symbolic analysis for vlsi systems-methods and applications. Springer, New YorkGoogle Scholar
  11. 11.
    Asenova I, Balik, F (2012) Multiparameter symbolic sensitivity analysis of active circuits by using nullor model and modified coates flow graph. In: Proceedings of the 9th international conference on ELEKTRO, Rajeck Teplice, Slovakia, May 2012, pp 401–406.  https://doi.org/10.1109/elektro.2012.6225691
  12. 12.
    Pierzchała M, Fakhfakh M (2014) Symbolic analysis of nullor-based circuits with the two-graph technique. Circuits Syst Signal Process 33(4):1053–1066.  https://doi.org/10.1007/s00034-013-9696-yCrossRefGoogle Scholar
  13. 13.
    Shi G, Hu H, Deng S (2017) Topological approach to automatic symbolic macromodel generation for analog integrated circuits. ACM Trans Des Autom Electron Syst 22(3):1–25.  https://doi.org/10.1145/3015782CrossRefGoogle Scholar
  14. 14.
    Tan SX-D, Shi RC-J (2000) Hierarchical symbolic analysis of large analog circuits via determinant decision diagrams. IEEE Trans Comput Aided Des Integr Circuits Syst 19:401–412.  https://doi.org/10.1109/43.838990CrossRefGoogle Scholar
  15. 15.
    Tan SX-D, Guo W, Qi Z (2004) Hierarchical approach to exact symbolic analysis of large analog circuits. In: Proceedings of design automation conference. pp 860–863.  https://doi.org/10.1109/tcad.2005.850812
  16. 16.
    Feussner W (1902) Ueber Stromverzweigung in netzformigen Leitern. Ann Phys 9(13):1304–1329.  https://doi.org/10.1002/andp.19023141320CrossRefzbMATHGoogle Scholar
  17. 17.
    Feussner W (1904) Zur Berechnung der Stromstarke in netzformigen Leitern. Ann Phys 15(12):385–394.  https://doi.org/10.1002/andp.19043201208CrossRefzbMATHGoogle Scholar
  18. 18.
    Alderson GE, Lin PM (1973) Computer generation of symbolic network functions—a new theory and implementation. IEEE Trans Circuit Theory CT-20:48–56.  https://doi.org/10.1109/tct.1973.1083610
  19. 19.
    Hashemian R (1977) Symbolic representation of network transfer functions using norator-nullator pairs. Electronic Circuits Syst 1(6):193–197.  https://doi.org/10.1049/ij-ecs:19770032CrossRefGoogle Scholar
  20. 20.
    Hoang S (1974) Direct topological rules for analysis of networks without magnetic coupling. Arch Elektrotech 23(2):387–405MathSciNetGoogle Scholar
  21. 21.
    Hoang S (1981) Direct topological method of analysis of networks containing operational amplifiers. Archi Elektrotech 30(118):911–922Google Scholar
  22. 22.
    Lasota S (2016) Models of modern active devices for effective and always cancelation-free symbolic analysis. IFAC-PapersOnLine. 49(25):080–085.  https://doi.org/10.1016/j.ifacol.2016.12.014MathSciNetCrossRefGoogle Scholar
  23. 23.
    Parten ME, Seacat RH (1971) Topological analysis of networks containing nullators and norators using residual networks. In: Proceedings of 23th annual Southwestern IEEE conference and exhibition, Houston, Texas, USA. pp 39–42Google Scholar
  24. 24.
    Sannuti P, Puri NN (1980) Symbolic network analysis—an algebraic formulation. IEEE Trans Circuits Syst CAS-27(8):679–687.  https://doi.org/10.1109/tcs.1980.1084881
  25. 25.
    Seacat RH (1963) A method of network analysis using residual networks. PhD dissertation, Texas A & M University, College Station, TexasGoogle Scholar
  26. 26.
    Seacat RH (1963) The application of Feussner’s method to active networks. In: Proceedings of 6th Midwest symposium circuit theoryGoogle Scholar
  27. 27.
    Barrows JT (1966) Extension of Feussner’s method to active networks. IRE Trans Circuit Theory CT–13(6):198–200Google Scholar
  28. 28.
    Chang S-M, MacKay JF, Wierzba GM (1992) Matrix reduction and numerical approximation during computation techniques for symbolic analog circuit analysis. In: Proceedings of IEEE international symposium on circuits and systems. San Diego, pp 1153–1156.  https://doi.org/10.1109/iscas.1992.230322
  29. 29.
    Chang S-M, Wierzba GM, Circuit level decomposition of networks with nullors for symbolic analysis. IEEE Trans Circuit Theory I CAS-41:699–711 (1994).  https://doi.org/10.1109/81.331521
  30. 30.
    Filaretov VV, Korotkov AS (2003) Generalized parameter extraction method in symbolic network analysis. In: Proceedings of European conference on circuit theory and design, vol 2, Kraków, Poland, Sept 2003. pp 406–409Google Scholar
  31. 31.
    Filaretov VV, Korotkov AS (2004) Generalized parameter extraction method in case of multiple excitation. In: Proceedings of 8th international workshop on symbolic methods and applications to circuit design (SMACD`04), Wroclaw, Poland, Sept 2004. pp 8–11Google Scholar
  32. 32.
    Filaretov VV, Gorshkov KS (2008) Transconductance realization of block-diagrams of electronic networks. In: Proceedings of international conference on signals and electronic systems (ICSES`08), Krakow, Poland, Sept 2008. pp 261–264.  https://doi.org/10.1109/icses.2008.4673410
  33. 33.
    Filaretov VV, Gorshkov KS (2011) The generalization of the extra element theorem for symbolic circuit tolerance analysis. J Electr Comput Eng 2011(9)  https://doi.org/10.1155/2011/652706
  34. 34.
    Filaretov VV, Gorshkov KS (2012) A circuit synthesis technique based on network determinant expansion. In: Proceedings of international conference on synthesis, modeling, analysis and simulation methods and applications to circuit design (SMACD`12), Seville, Spain, Sept 2012. pp 293–296.  https://doi.org/10.1109/smacd.2012.6339397
  35. 35.
    Filaretov VV, Gorshkov KS (2013) Topological analysis of active networks containing pathological mirror elements. In: Proceedings of IEEE XXXIII international scientific conference “ELECTRONICS AND NANOTECHNOLOGY” (ELNANO–2013), Kiev, Ukrain, April 2013. pp 293–296.  https://doi.org/10.1109/elnano.2013.6552078
  36. 36.
    Filaretov VV, Gorshkov KS, Kurganov SA (2015) A cancellation-free symbolic sensitivity technique based on network determinant expansion. Adv Electr Eng 2015:1–13.  https://doi.org/10.1155/2015/328517CrossRefGoogle Scholar
  37. 37.
    Filaretov V, Gorshkov K, Kurganov S (2015) Parameters extraction technique for optimal network functions of SC circuits. In: Proceedings of international Siberian conference on control and communications (SIBCON-2015), Omsk, Russia, May 2015. pp 1–6.  https://doi.org/10.1109/sibcon.2015.7147030
  38. 38.
    Filaretov VV, Kurganov SA, Gorshkov KS (2016) Generalized parameter extraction method for analog circuit fault diagnosis. In: Proceedings of international conference on industrial engineering, applications and manufacturing (ICIEAM), Chelyabinsk, Russia, May 2016. pp 1–6.  https://doi.org/10.1109/icieam.2016.7911568
  39. 39.
    Filaretov VV, Mayko GV, Gorshkov KS (2015) Equivalent transformations of trees with nullor and mirror pathological elements. In: Proceedings of 3rd workshop on advances in information, electronic and electrical engineering (AIEEE–2015), Riga, Latvia, Nov 2015. pp 1–5.  https://doi.org/10.1109/aieee.2015.7367286
  40. 40.
    Gorshkov KS, (2016) The simulation technique for large-scale tree structured interconnects. In: Proceedings of international conference on industrial engineering, applications and manufacturing (ICIEAM), Chelyabinsk, Russia, May 2016. pp 1–6.  https://doi.org/10.1109/icieam.2016.7911562
  41. 41.
    Doboli A, Vemuri R (2001) A regularity-based hierarchical symbolic analysis methods for largescale analog networks. IEEE Trans Circuits Syst II Analog Digital Signal Process 48(11):1054–1068.  https://doi.org/10.1109/82.982361
  42. 42.
    Hassoun M, Lin PM (1995) A hierarchical network approach to symbolic analysis of large-scale networks. IEEE Trans Circuits Syst I Fundum Theory Appl. 42(4):201–211.  https://doi.org/10.1109/81.382473
  43. 43.
    Jou SJ, Perng MF, Su CC, Wang CK (1994) Hierarchical techniques for symbolic analysis of large electronic circuits. In: Proceedings of international symposium on circuits and systems (ISCAS). pp 21–24.  https://doi.org/10.1109/iscas.1994.408745
  44. 44.
    Starzyk JA, Konczykowska A (1986) Flowgraph analysis of large electronic networks. IEEE Trans Circuit Theory 23(3):302–315.  https://doi.org/10.1109/TCS.1986.1085914CrossRefzbMATHGoogle Scholar
  45. 45.
    Lin PM (1991) Symbolic network analysis. Elsevier Science Publishers B.V.Google Scholar
  46. 46.
    Kron G (1963) Diakoptics—piecewise solution of large scale systems. McDonald, London, p 166Google Scholar
  47. 47.
    Carlin HJ (1964) Singular networks elements. IEEE Trans Circuit Theory 11:67–72.  https://doi.org/10.1109/TCT.1964.1082264CrossRefGoogle Scholar
  48. 48.
    Davies AC (1966) Topological solution of networks containing nullators and norators. Electron Lett 2(3):90–92.  https://doi.org/10.1049/el:19660073CrossRefGoogle Scholar
  49. 49.
    Braun J (1966) Topological analysis of networks containing nullators and norators. Electron Lett 2(11):427–428.  https://doi.org/10.1049/el:19660359CrossRefGoogle Scholar
  50. 50.
    Nguyen Q-M, Tran H-D, Wang H-Y, Chang S-H (2016) Singular nullor and mirror elements for circuit design. In: Parinov A et al (eds) Advanced materials, vol 175. Springer Proceedings in Physics. pp 669–674.  https://doi.org/10.1007/978-3-319-26324-3_48
  51. 51.
    Saad RA, Soliman AM (2002) On the voltage mirrors and the current mirrors. Analog Integr Circuits Signal Process 32(1):79–81.  https://doi.org/10.1023/A:1016027909401CrossRefGoogle Scholar
  52. 52.
    Saad RA, Soliman AM (2008) Use of mirror elements in the active device synthesis by admittance matrix expansion. IEEE Trans Circuits Syst I Fundam Theory Appl 55(9):2726–2735.  https://doi.org/10.1109/tcsi.2008.916699
  53. 53.
    Wang HY, Chiang NH, Nguyen QM, Chang SH (2014) Circuit synthesis using pathological elements. Adv Mater 152:317–328 (Springer Proceedings in Physics)Google Scholar
  54. 54.
    Milic MM (1974) General passive networks—solvability, degeneracies, and order of complexity. IEEE Trans Circuits Syst CAS-21(2):177–183  https://doi.org/10.1109/tcs.1974.1083845
  55. 55.
    Ozawa T (1976) Topological conditions for the solvability of linear active networks. Int J Circuit Theory Appl 4(2):125–136.  https://doi.org/10.1002/cta.4490040203CrossRefzbMATHGoogle Scholar
  56. 56.
    Vandewalle J, Nossek JA (2011) Nullators and norators in circuit education a benefit or an obstacle?. Proceedings of IEEE international symposium on circuits and systems (ISCAS). pp 349–352  https://doi.org/10.1109/iscas.2011.5937574
  57. 57.
    Dmytryshyn R, Kubaszek A (1998) Sequence of expressions generation for the repetitive analysis acceleration. In: Proceedings of international workshop on symbolic methods, modeling and application in circuit design (SMACD’98). Kaiserslautern, Germany, pp. 154–159Google Scholar
  58. 58.
    Dmytryshyn R, Kubaszek A (2002) Multimethodical approach and generation of sequence of expressions for acceleration of repetitive analysis of analog circuits. Analog Integr Circuits Signal Process 31(2):147–159.  https://doi.org/10.1023/A:1015046127945CrossRefGoogle Scholar
  59. 59.
    Rodanski B (2000) Computational Efficiency of Symbolic Sequential Formulae. In: Proceedings of the 6th international workshop on symbolic methods and applications in circuit design (SMACD-2000), Lisbon, Portugal. pp 45–50Google Scholar
  60. 60.
    Poole D (2005) Linear algebra: a modern introduction. Cengage Learning, BostonGoogle Scholar
  61. 61.
    Sigorskij V, Petrenko A (1971) Algoritmy analiza elektricheskikh skhem (Algorithms of the analysis of electronic circuits). Tehnika, Kiev In RussianGoogle Scholar
  62. 62.
    Vlach J, Singhal K (1994) Computer methods for circuit analysis and design, 2nd edn. Van Nostrand Reinhold Company, New YorkGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vladimir Filaretov
    • 1
  • Konstantin Gorshkov
    • 2
  • Sergey Kurganov
    • 1
  • Maxim Nedorezov
    • 3
  1. 1.Department of Electrical EngineeringUlyanovsk State Technical UniversityUlyanovskRussia
  2. 2.Department of EEPEMSITMO UniversitySt. PetersburgRussia
  3. 3.Department of Aeromechanics and Flight EngineeringMoscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations