Advertisement

Nullor-Based Negative-Feedback Memristive Amplifiers: Symbolic-Oriented Modelling and Design

  • Arturo Sarmiento-Reyes
  • José Balaam Alarcón-Angulo
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 479)

Abstract

The memristor as an actual device was introduced in April 2008 at the HP labs, while its original foundations are dated from 1971 when Prof. L. O. Chua devised the memristor as the fourth basic circuit element. Nowadays, the memristor has captured most of the attention not only from circuit theoreticians, but also from circuit designers because the widely open possibilities of the device in applications where it co-exists with traditional electronics. A particular case of such an application arises when the memristor is combined with the nullor in order to achieve a memristive input-output transfer function. In this chapter, we firstly introduce a fully symbolic model of the memristor that is used for the symbolic analysis of the amplifier configurations. It is important to point out the symbolic nature of our memristor model in contrast with other models that are of numerical nature or implemented in a macro-equivalent. Secondly, the four single-loop negative-feedback nullor-based amplifier configurations are introduced, and their corresponding analytic transfer functions are generated and characterised. Similarly, the noise and harmonic distortion analyses are carried out on the four configurations yielding fully symbolic expressions for both, the output equivalent noise and the harmonic components. In a next step, the nullor is synthesised by using a memistor, which is a combination of two memristors connected back-to-back. Finally, a transmemristance amplifier is used as a case study of design when the nullor is substituted by a memistor. Along the manuscript, the resulting expressions from the mathematical analyses are verified with HSPICE simulations that incorporate the memristor model from a description in the VERILOG-A language.

Keywords

Symbolic modeling Memristor models Nullor-based memristor amplifiers Memristor Memistor 

References

  1. 1.
    Carlin HJ, Youla DC (1960) Network synthesis with negative resistors. Proc IRE 49(5):907–920MathSciNetCrossRefGoogle Scholar
  2. 2.
    Carlin H (1964) Singular network elements. IEEE Trans Circ Theor 11(1):67–72CrossRefGoogle Scholar
  3. 3.
    Tellegen BDH (1954) La recherche pour una série compléte d’éléments de circuit ideaux non-linéaires. Milan J Math 25(1):134–144Google Scholar
  4. 4.
    Davies AC (1967) The significance of nullators, norators and nullors in active-network theory. Radio Electronic Eng 34(5):259–267CrossRefGoogle Scholar
  5. 5.
    Tellegen BDH (1966) On nullators and norators. IEEE Trans Circ Theor 13(4):466–469CrossRefGoogle Scholar
  6. 6.
    Pierzchala M, Fakhfakh M (2010) Generation of active inductor circuits. In: Proceedings of 2010 IEEE international symposium on circuits and systems, pp 2394–2397Google Scholar
  7. 7.
    PierzchaŁa Marian, Fakhfakh Mourad (2011) Transformation of LC-filters to active RC-circuits via the two-graph method. Microelectron J 42(8):999–1005CrossRefGoogle Scholar
  8. 8.
    Huijsing JH, de Korte J (1976) Monolithic nullor. In: 2nd European solid state circuits conference on ESSCIRC 76, pp 22–23Google Scholar
  9. 9.
    Huijsing JH, Korte JD (1977) Monolithic nullor—a universal active network element. IEEE J Solid-State Circ 12(1):59–64CrossRefGoogle Scholar
  10. 10.
    Huijsing JH (1993) Design and applications of the operational floating amplifier (OFA): the most universal operational amplifier. Analog Integr Circ Sig Process 4(2):115–129CrossRefGoogle Scholar
  11. 11.
    Nordholt E (1981) Classes and properties of multiloop negative-feedback amplifiers. IEEE Trans Circ Syst 28(3):203–211CrossRefGoogle Scholar
  12. 12.
    Nordholt EH (1983) Design of high-performance negative-feedback amplifiers. Elsevier Scientific, New YorkGoogle Scholar
  13. 13.
    Stoffels J (1988) Automation in high-performance negative feedback amplifier design. PhD thesis, Delft University of TechnologyGoogle Scholar
  14. 14.
    Stoffels J, van Reeuwijk C (1992) Ampdes: a program for the synthesis of high-performance amplifiers. In: 1992 Proceedings of the European conference on design automation, pp 474–479Google Scholar
  15. 15.
    Cabeza R, Carlosena A (1997) Analog universal active device: theory, design and applications. Analog Integr Circ Sig Process 12(2):153–168CrossRefGoogle Scholar
  16. 16.
    Palumbo G, Pennisi S (2002) Feedback amplifiers: theory and design. Springer, New YorkGoogle Scholar
  17. 17.
    Verhoeven CJM, van Staveren A, Monna GLE, Kowenhoven MHL, Yildiz E (2003) Structured electronic design: negative-feedback amplifiers. Kluwer Academic Publishers, New YorkGoogle Scholar
  18. 18.
    van Staveren A, Verhoeven CJM, Arthur HM, van Roermund A (2001) Structured electronic design: high-performance harmonic oscillators and bandgap references. Kluwer Academic Publishers, BostonGoogle Scholar
  19. 19.
    Verhoeven CJM, van Staveren A (1999) Systematic biasing of negative feedback amplifiers. In: Design, automation and test in Europe conference and exhibition, proceedings (Cat. No. PR00078), pp 318–322Google Scholar
  20. 20.
    Chua LO (1971) Memristor—The missing circuit element. IEEE Circ Theor CT-18(5):507–519Google Scholar
  21. 21.
    Chua LO, Kang Sung Mo (1976) Memristive devices and systems. Proc IEEE 64(2):209–223MathSciNetCrossRefGoogle Scholar
  22. 22.
    Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83CrossRefGoogle Scholar
  23. 23.
    Williams RS (2008) How we found the missing memristor. IEEE Spectr 45(12):28–35CrossRefGoogle Scholar
  24. 24.
    Kavehei O, Iqbal A, Eshraghian K, Al-Sarawi SF, Abbott D (2009) The fourth element: characteristics, modelling and electromagnetic theory of the memristor. In: 2009 International Conference on Communications, Circuits and Systems, ICCCAS 2009, pp 921–927Google Scholar
  25. 25.
    He Ji-Huan (2004) Comparison of homotopy perturbation method and homotopy analysis method. Appl Math Comput 156(2):527–539MathSciNetzbMATHGoogle Scholar
  26. 26.
    Vazquez-Leal H (2014) Generalized homotopy method for solving nonlinear differential equations. Comput Appl Math 33(1):275–288MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sarmiento-Reyes A, Hernández-Martínez L, Vázquez-Leal H, Hernández Mejía C, Arango GU (2015) A fully symbolic homotopy-based memristor model for applications to circuit simulation. J Analog Integr Circ Sig Process 85(1):65–80CrossRefGoogle Scholar
  28. 28.
    Joglekar Yogesh N, Wolf Stephen J (2009) The elusive memristor: properties of basic electrical circuits. Eur J Phys 30(4):661CrossRefzbMATHGoogle Scholar
  29. 29.
    Adhikari SP, Sah MP, Kim H, Chua LO (2013) Three fingerprints of memristor. IEEE Trans Circ Syst I Regul Pap 60(11):3008–3021CrossRefGoogle Scholar
  30. 30.
    Georgiou PS, Koymen I, Drakakis EM (2015) Noise properties of ideal memristors. In: 2015 IEEE international symposium on circuits and systems (ISCAS), pp 1146–1149. Imperial College London, London, United Kingdom, IEEEGoogle Scholar
  31. 31.
    Halfmann T, Hennig E, Thole M (1998) Behavioral modeling and transient analysis with analog insydes. In: Proceedings of 5th International Workshop on Symbolic Methods and Applications in Circuit Design (SMACD’98), pp 49–56Google Scholar
  32. 32.
    Yu Q, Qin Z, Yu J, Mao Y (2009) Transmission characteristics study of memristors based op-amp circuits. In: 2009 International conference on communications, circuits and systems, pp 974–977Google Scholar
  33. 33.
    Totev ED, Verhoeven CJM (2005) Design consideration for lowering sensitivity to out of band interference of negative feedback amplifiers. In: 2005 IEEE International symposium on circuits and systems, pp 1597–1600, vol 2Google Scholar
  34. 34.
    Martins MA, van Hartingsveldt K, Verhoeven CJM, Fernandes JR (2005) A wide-band low-noise amplifier with double loop feedback. In: 2005 IEEE International symposium on circuits and systems, pp 5353–5356, vol 6Google Scholar
  35. 35.
    Widrow B (1960) Adaptive “ADALINE” neuron using chemical “memistors”. Technical Report 1553-2, Stanford Electronics LaboratoriesGoogle Scholar
  36. 36.
    Xia Q, Pickett MD, Yang JJ, Li X, Wu W, Medeiros-Ribeiro G, Williams RS (2011) Two- and three-terminal resistive switches: nanometer-scale memristors and memistors. Adv Funct Mater 21(14):2660–2665CrossRefGoogle Scholar
  37. 37.
    Kim H, Adhikari SP (2012) Memistor is not memristor [express letters]. IEEE Circ Syst Mag, 12(1):75–78Google Scholar
  38. 38.
    Adhikari SP, Kim H (2014) Why are memristor and memistor different devices? In: Memristor networks, pp 95–112. Springer, New YorkGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Arturo Sarmiento-Reyes
    • 1
  • José Balaam Alarcón-Angulo
    • 1
  1. 1.Electronics DepartmentINAOEPueblaMexico

Personalised recommendations