Skip to main content

Stackelberg Equilibrium Sets in Polymatrix Mixed-Strategy Generalized Stackelberg Games

  • Chapter
  • First Online:
Pareto-Nash-Stackelberg Game and Control Theory

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 89))

  • 978 Accesses

Abstract

By modifying the principle of simultaneity in strategy/simultaneous games to a hierarchical/sequential principle according to which players select their strategies in a known order, we obtain other class of games called Generalised Stackelberg Games or simply Stackelberg Games. Such games are called sequential games to especially highlight a sequential process of decision making. At every stage of Stackelberg games one player selects his strategy. To ensure choosing of his optimal strategy he solves an optimization problem. For such games a Stackelberg equilibrium concept is considered as a solution concept (Von Stackelberg in Marktform und Gleichgewicht (Market Structure and Equilibrium). Springer, Vienna, XIV+134, 1934, [1], Chenet al., in IEEE Transactions on Automatic Control AC-17, 791–798, 1972, [2], Simaan and Cruz in Journal of Optimization Theory and Applications 11, 613–626, 1973, [3], Simaan and Cruz in Journal of Optimization Theory and Applications 11, 533–555, 1973, [4], Leitmann in Journal of Optimization Theory and Applications 26, 637–648, 1978, [5], Blaquière in Une géneralisation du concept d’optimalité et des certains notions geometriques qui’s rattachent, No. 1–2, Bruxelles, 49–61, 1976, [6], Başar and Olsder in Dynamic noncooperative game theory. SIAM, Philadelphia, [7], Ungureanu in ROMAI Journal 4(1), 225–242, 2008, [8], Ungureanu in Mathematical Modelling, Optimization and Information Technologies, International Conference Proceedings, ATIC, 181–189, Evrica, Chişinău, [9], Peters in Game theory: A multi-leveled approach, p. XVII+494, Springer, Berlin, 2015, [10], Ungureanu and Lozan in Mathematical Modelling, Optimization and Information Technologies, International Conference Proceedings, ATIC, 370–382, Evrica, Chişinău, 2016, [11], Korzhyk et al. in Journal of Artificial Intelligence Research, 41, 297–327, 2011, [12]). The set of all Stackelberg equilibria is described/investigated as a set of optimal solutions of an optimization problem. The last problem is obtained by considering results of solving a sequence of optimization problems that reduce all at once the graph of best response mapping of the last player to the Stackelberg equilibrium set. Namely the problem of Stackelberg equilibrium set computing in bimatrix and polymatrix finite mixed-strategy games is considered in this chapter. A method for Stackelberg equilibrium set computing is exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Von Stackelberg, H. 1934. Marktform und Gleichgewicht (Market Structure and Equilibrium). Vienna: Springer, XIV+134 pp. (in German).

    Google Scholar 

  2. Chen, C.I., and J.B. Cruz, Jr. 1972. Stackelberg solution for two-person games with biased information patterns. IEEE Transactions on Automatic Control AC-17: 791–798.

    Google Scholar 

  3. Simaan, M., and J.B. Cruz Jr. 1973. Additional aspects of the Stackelberg strategy in nonzero sum games. Journal of Optimization Theory and Applications 11: 613–626.

    Article  MathSciNet  MATH  Google Scholar 

  4. Simaan, M., and J.B. Cruz Jr. 1973. On the Stackelberg strategy in nonzero sum games. Journal of Optimization Theory and Applications 11: 533–555.

    Article  MathSciNet  MATH  Google Scholar 

  5. Leitmann, G. 1978. On generalized Stackelberg strategies. Journal of Optimization Theory and Applications 26: 637–648.

    Article  MathSciNet  MATH  Google Scholar 

  6. Blaquière, A. 1976. Une géneralisation du concept d’optimalité et des certains notions geometriques qui’s rattachent, Institute des Hautes Etudes de Belgique, Cahiers du centre d’études de recherche operationelle, Vol. 18, No. 1–2, Bruxelles, 49–61.

    Google Scholar 

  7. Başar, T., and G.J. Olsder. 1999. Dynamic noncooperative game theory. Society for Industrial and Applied Mathematics, vol. 536. Philadelphia: SIAM.

    Google Scholar 

  8. Ungureanu, V. 2008. Solution principles for simultaneous and sequential games mixture. ROMAI Journal 4 (1): 225–242.

    MathSciNet  MATH  Google Scholar 

  9. Ungureanu, V. 2008. Solution principles for generalized Stackelberg games. In Mathematical Modelling, Optimization and Information Technologies, International Conference Proceedings, ATIC, March 19–21. Chişinău. Evrica, 181–189.

    Google Scholar 

  10. Peters, H. 2015. Game theory: A multi-leveled approach, 2nd edn. Berlin: Springer, XVII+494 pp.

    Google Scholar 

  11. Ungureanu, V., and V. Lozan, 2016. Stackelberg equilibrium sets in bimatrix mixed-strategy games. In Mathematical Modelling, Optimization and Information Technologies, International Conference Proceedings, ATIC, March 22–25, 2016, Chişinău: Evrica, 370–382 (in Romanian).

    Google Scholar 

  12. Korzhyk, D., Z. Yin, C. Kiekintveld, V. Conitzer, and M. Tambe. 2011. Stackelberg versus Nash in security games: An extended investigation of interchangeability, equivalence, and uniqueness. Journal of Artificial Intelligence Research 41: 297–327.

    MathSciNet  MATH  Google Scholar 

  13. Ungureanu, V. 2006. Nash equilibrium set computing in finite extended games. Computer Science Journal of Moldova, 14, No. 3 (42): 345–365.

    Google Scholar 

  14. Ungureanu, V. 2013. Linear discrete-time Pareto-Nash-Stackelberg control problem and principles for its solving. Computer Science Journal of Moldova 21, No. 1 (61): 65–85.

    Google Scholar 

  15. Ungureanu, V., and V. Lozan, 2013. Stackelberg equilibria set in multi-matrix mixed strategy games. In Proceedings IIS: International Conference on Intelligent Information Systems, Chişinău: Institute of Mathematics and Computer Science, August 20–23, 2013, 114–117.

    Google Scholar 

  16. Arkhangel’skii, A.V., and V.V. Fedorchuk. 1990. The basic concepts and constructions of general topology. In General topology I: Basic concepts and constructions, vol. 17, ed. A.V. Arkhangel’skii, and L.S. Pontrjagin, 1–90. Berlin: Dimension Theory, Encyclopaedia of the Mathematical Sciences Springer.

    Chapter  Google Scholar 

  17. Rockafellar, R.T., and R.J.-B. Wets, 2009. Variational analysis, 3rd edn. Berlin: Springer, XII+726 pp.

    Google Scholar 

  18. Kolmogorov, A.N., and S.V. Fomin. 1957. Elements of the theory of functions and functional analysis: Metric and normed spaces, vol. 1, 141. Rochester, New York: Graylock Press.

    Google Scholar 

  19. Kolmogorov, A.N., and S.V. Fomin. 1961. Elements of the theory of functions and functional analysis: Measure, the lebesgue integral, hilbert space, vol. 2, 139. Rochester, New York: Graylock Press.

    Google Scholar 

  20. Kolmogorov , A.N., and S.V. Fomin, 1989. Elements of the Theory of Functions and Functional Analysis (Elementy teorii funczii i funczionalnogo analiza) Moskva: Nauka, 6th edn. 632 pp. (in Russian).

    Google Scholar 

  21. Kantorovich, L.V., and G.P. Akilov. 1977. Functional analysis, 742. Moskva: Nauka.

    Google Scholar 

  22. Dantzig, G.B., and M.N. Thapa. 2003. Linear programming 2: Theory and extensions, 475. New York: Springer.

    MATH  Google Scholar 

  23. Rockafellar, T. 1970. Convex analysis, 468. Princeton: Princeton University Press.

    Book  MATH  Google Scholar 

  24. Curtain, R.F., and A.J. Pritchard, 1977. Functional analysis in modern applied mathematics. London: Academic Press Inc., IX+339 pp.

    Google Scholar 

  25. Collatz, L. 1966. Functional analysis and numerical mathematics. New York: Academic Press, X+473 pp.

    Google Scholar 

  26. Göpfert, A., Tammer, C., Riahi, H., and C. Zălinescu, 2003. Variational methods in partially ordered spaces. New York: Springer, XIV+350 pp.

    Google Scholar 

  27. Berge, C. 1963. Topological Spaces: Including a Treatment of Multi-Valued Functions, Vector Spaces and Convexity. Edinburgh and London: Oliver and Boyd Ltd, XIII+270 pp.

    Google Scholar 

  28. Aubin, J.-P., and H. Frankowska. 1990. Set-valued analysis, systems and control series, vol. 2, 480. Boston: Birkhäuser.

    Google Scholar 

  29. Burachik, R.S., and A.N. Iusem. 2008. Set-valued Mappings and Enlargements of Monotone Operators, 305. New York: Springer Science.

    Google Scholar 

  30. Zelinskii, J.B. 1993. Multi-valued mappings in analysis. Kiev: Naukova Dumka, 1993, 362 pp. (in Russian).

    Google Scholar 

  31. Chen, G., Huang, X., and Yang, X. Vector optimization: set-valued and variational analysis. Berlin: Springer, X+308 pp.

    Google Scholar 

  32. Bourbaki, N. 1995. General topology. Chapters 1–4, Elements of Mathematics, vol. 18, New York: Springer, VII+437 pp.

    Google Scholar 

  33. Bourbaki, N. 1998. General topology, Chapters 5–10, Elements of Mathematics. New York: Springer, IV+363 pp.

    Google Scholar 

  34. Arzelà, C. 1895. Sulle funzioni di linee. Mem. Accad. Sci. Ist. Bologna Cl. Sci. Fis. Mat., 5(5): 55–74 (in Italian).

    Google Scholar 

  35. Arzelà, C. 1882–1883. Un’osservazione intorno alle serie di funzioni. Rend. Dell’ Accad. R. Delle Sci. Dell’Istituto di Bologna, 142–159 (in Italian).

    Google Scholar 

  36. Ascoli, G. 1882–1883. Le curve limiti di una variet data di curve. Atti della R. Accad. Dei Lincei Memorie della Cl. Sci. Fis. Mat. Nat., 18(3): 521–586 (in Italian).

    Google Scholar 

  37. Dunford, N., and J.T. Schwartz, 1958. Linear operators, vol. 1: General Theory, New York: Wiley Interscience Publishers, XIV+858 pp.

    Google Scholar 

  38. Kelley, J.L. 1991. General topology. New York: Springer-Verlag, XIV+298 pp.

    Google Scholar 

  39. Arkhangel’skii, A.V. 1995. Spaces of mappings and rings of continuous functions. In General topology III: Paracompactness, Function Spaces, Descriptive Theory, ed. A.V. Arkhangel’skii. Encyclopaedia of the Mathematical Sciences, vol. 51, 1–70. Berlin: Springer.

    Google Scholar 

  40. Nash, J. 1951. Noncooperative games. Annals of Mathematics 54 (2): 280–295.

    Article  Google Scholar 

  41. Kakutani, S. 1941. A generalization of Brouwer’s fixed point theorem. Duke Mathematical Journal 8: 457–459.

    Article  MathSciNet  MATH  Google Scholar 

  42. Brouwer, L.E.J. 1911. Über Abbildungen von Mannigfaltigkeiten. Mathematische Annalen 71: 97–115. (in German).

    Article  MathSciNet  MATH  Google Scholar 

  43. Berinde, V. 2007. Iterative approximation of fixed points, 2nd edn. Berlin: Springer, XV+322 pp.

    Google Scholar 

  44. Agarwal, R.P., M. Meehan, and D. O’Regan, 2001. Fixed point theory and applications. Cambridge: Cambridge University Press, X+170 pp.

    Google Scholar 

  45. Górniewicz, L. 2006. Topological fixed point theory of multivalued mappings. Dordrecht: Springer, XIII+538 pp.

    Google Scholar 

  46. Carl, S., and S. Heikkilä, 2011. Fixed point theory in ordered sets and applications: from differential and integral equations to game theory. New York: Springer Science + Business Media, XIV+477 pp.

    Google Scholar 

  47. Border, K.C. 1985. Fixed point theorems with applications to economics and game theory. Cambridge: Cambridge University Press, VIII+129 pp.

    Google Scholar 

  48. Brown, R.F., M. Furi, L. Górniewicz, and E. Jing, 2005. Handbook of topological fixed point theory, Dordrecht, Netherlands: Springer, IX+971 pp.

    Google Scholar 

  49. Granas, A., and J. Dugundji, 2003. Fixed point theory. New York: Springer, XVI+690 pp.

    Google Scholar 

  50. Conitzer, V., and T. Sandholm, 2006. Computing the optimal strategy to commit to, Proceedings of the 7th ACM Conference on Electronic Commerce, Ann Arbor, MI, USA, June 11–15, 2006, 82–90.

    Google Scholar 

  51. Letchford, J., V. Conitzer, and K. Munagala. 2009. Learning and approximating the optimal strategy to commit to, algorithmic game theory. Lecture Notes in Computer Science 5814: 250–262.

    Article  MATH  Google Scholar 

  52. Marhfour, A. 2000. Mixed solutions for weak Stackelberg problems: existence and stability results. Journal of Optimization Theory and Applications 105 (2): 417–440.

    Article  MathSciNet  MATH  Google Scholar 

  53. Ungureanu, V. 2001. Mathematical programming. Chişinău: USM, 348 pp. (in Romanian).

    Google Scholar 

  54. Dantzig, G.B., and M.N. Thapa. 1997. Linear programming 1: Introduction, 474. New York: Springer.

    MATH  Google Scholar 

  55. Demyanov, V., and V. Malozemov, 1972. Introduction in minimax. Moscow: Nauka, 368 pp. (in Russian).

    Google Scholar 

  56. Murty, K.G. 2014. Computational and algorithmic linear algebra and n-dimenshional geometry, 480. Singapore: World Scientific Publishing Company.

    Google Scholar 

  57. Trefethen, L.N., and D. Bau, III, 1997. Numerical linear algebra. Philadelphia: Society for Industrial and Applied Mathematics, XII+361 pp.

    Google Scholar 

  58. Shoham, Y., and K. Leyton-Brown. 2009. Multi-agent systems: Algorithmic, game-theoretic, and logical foundations, 532. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  59. Jukna, S. 2011. Extremal combinatorics: With applications in computer science, 2nd edn. Berlin: Springer, XXIII+411 pp.

    Google Scholar 

  60. Karmarkar, N. 1984. New polynomial-time algorithm for linear programming. Combinatorica 4 (4): 373–395.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriu Ungureanu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ungureanu, V. (2018). Stackelberg Equilibrium Sets in Polymatrix Mixed-Strategy Generalized Stackelberg Games. In: Pareto-Nash-Stackelberg Game and Control Theory. Smart Innovation, Systems and Technologies, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-319-75151-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75151-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75150-4

  • Online ISBN: 978-3-319-75151-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics