Sets of Nash Equilibria in Polymatrix Mixed-Strategy Games

  • Valeriu UngureanuEmail author
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 89)


The method of intersection of best response mapping graphs is applied to determine a Nash equilibrium set in mixed extensions of noncooperative finite games (polymatrix games). The problem of Nash equilibrium set representation in bimatrix mixed strategy game was considered before by Vorob’ev in 1958 (Theory Probab Appl 3:297–309, 1958) [1] and Kuhn in 1961 (Proc Natl Acad Sci USA 47:1657–1662, 1961) [2], but as stressed by different researchers (see e.g. Raghavan (Handbook of game theory with economic applications. Elsevier Science B.V., North-Holland, 2002) [3]) these results have only been of theoretical interest. They where rarely used practically to compute Nash equilibria as well as the results of Mills (J Soc Ind Appl Math 8:397–402, 1960) [4], Mangasarian (J Soc Ind Appl Math 12:778–780, 1964) [5], Winkels (Game theory and related topics. North-Holland, Amsterdam, 1979) [6], Yanovskaya (Lithuanian Mathematical Collection (Litovskii Matematicheskii Sbornik) 8:381–384, 1968) [7], Howson (Manage Sci 18:312–318, 1972) [8], Eaves (SIAM J Appl Math 24:418–423, 1973) [9], Mukhamediev (U.S.S.R. Computational Mathematics and Mathematical Physics 18:60–66, 1978) [10], Savani (Finding Nash Equilibria of Bimatrix Games. London School of Economics, 2006) [11], and Shokrollahi (Palestine J Math 6:301–306, 2017) [12]. The first practical algorithm for Nash equilibrium computing was the algorithm proposed by Lemke and Howson in 1958 (J Soc Ind Appl Math 12:413–423, 1964) [13]. Unfortunately, it doesn’t compute Nash equilibrium sets. There are algorithms for polymatrix mixed strategy games too, Ungureanu in (Comput Sci J Moldova 42: 345–365, 2006) [14], Audet et al. in (J Optim Theory Appl 129:349–372, 2006) [15]. More the more, the number of publications devoted to the problem of finding the Nash equilibrium set is continuously increasing, see, e.g., 2010’s bibliography survey by Avis et al. (Econ Theory 42:9–37, 2010) [16], and the other by Datta (Econ Theory 42:55–96, 2010) [17].


  1. 1.
    Vorob’ev, N.N. 1958. Equilibrium points in bimatrix games. Theory of Probability and its Applications 3: 297–309.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kuhn, H.W. 1961. An algorithm for equilibrium points in bimatrix games. Proceedings of the National Academy of Sciences U.S.A 47: 1657–1662.Google Scholar
  3. 3.
    Raghavan, T.E.S. 2002. Non-zero sum two-person games. In Handbook of Game Theory with Economic Applications, ed. R.J. Aumann, and S. Hart, vol. 3, 1687–1721. Elsevier Science B.V.: North-Holland.Google Scholar
  4. 4.
    Mills, H. 1960. Equilibrium points in finite games. Journal of the Society for Industrial and Applied Mathematics 8 (2): 397–402.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mangasarian, O.L. 1964. Equilibrium points of bimatrix games. Journal of the Society for Industrial and Applied Mathematics 12 (4): 778–780.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Winkels, H.-M. 1979. An algorithm to determine all equilibrium points of a bimatrix games. In Game Theory and Related Topics, ed. O. Moeschler, and D. Pallschke, 137–148. Amsterdam: North-Holland.Google Scholar
  7. 7.
    Yanovskaya, E.B. 1968. Equilibrium points in polymatrix games. Lithuanian Mathematical Collection (Litovskii Matematicheskii Sbornik) 8 (2): 381–384. (in Russian).zbMATHGoogle Scholar
  8. 8.
    Howson Jr., J.T. 1972. Equilibria of polymatrix games. Management Science 18: 312–318.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Eaves, B.C. 1973. Polymatrix games with joint constraints. SIAM Journal of Applied Mathematics 24: 418–423.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mukhamediev, B.M. 1978. The solution of bilinear programming problem and finding the equilibrium situations in bimatrix games. U.S.S.R. Computational Mathematics and Mathematical Physics 18 (2): 60–66.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Savani, R.S.J. 2006. Finding Nash Equilibria of Bimatrix Games Ph. D. Thesis, London School of Economics, 115.Google Scholar
  12. 12.
    Shokrollahi, A. 2017. A note on nash equilibrium in bimatrix games with nonnegative matrices. Palestine Journal of Mathematics 6 (1): 301–306.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Lemke, C.E., and J.T. Howson Jr. 1964. Equilibrium points of bimatrix games. Journal of the Society for Industrial and Applied Mathematics 12 (2): 413–423.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ungureanu, V. 2006. Nash equilibrium set computing in finite extended games. Computer Science Journal of Moldova 42 (3): 345–365.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Audet, C., S. Belhaiza, and P. Hansen. 2006. Enumeration of all the extreme equilibria in game theory: Bimatrix and polymatrix games. Journal of Optimization Theory and Applications 129 (3): 349–372.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Avis, D., G.D. Rosenberg, R. Savani, and B. Von Stenghel. 2010. Enumeration of Nash equilibria for two player games. Economic Theory 42: 9–37.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Datta, R.S. 2010. Finding all Nash equilibria of a finite game using polynomial algebra. Economic Theory 42: 55–96.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sagaidac, M., and V. Ungureanu. 2004. Operational research Chişinău: CEP USM, 296 pp. (in Romanian).Google Scholar
  19. 19.
    Ungureanu, V., and A. Botnari. 2005. Nash equilibrium sets in mixed extension of \(2\times 2\times 2\) games. Computer Science Journal of Moldova13, 1(37): 13–28.Google Scholar
  20. 20.
    Ungureanu, V., and A. Botnari. 2005. Nash equilibrium sets in mixed extended \(2\times 3\) games. Computer Science Journal of Moldova 13(2)(38): 136–150.Google Scholar
  21. 21.
    Dantzig, G.B., and M.N. Thapa. 1997. Linear Programming 1: Introduction, 474. New York: Springer.zbMATHGoogle Scholar
  22. 22.
    Dantzig, G.B., and M.N. Thapa. 2003. Linear Programming 2: Theory and Extensions, 475. New York: Springer.zbMATHGoogle Scholar
  23. 23.
    Ungureanu, V. 2001. Mathematical Programming, 348 pp Chişinău: USM. (in Romanian).Google Scholar
  24. 24.
    Rao, S.S. 2009. Engineering Optimization: Theory and Practice, XIX+813 pp. New Jersey: John Wiley & Sons, Inc.Google Scholar
  25. 25.
    Nash, J. 1951. Noncooperative games. Annals of Mathematics 54 (2): 280–295.CrossRefGoogle Scholar
  26. 26.
    Van Damme, E. 1992. Stability and Perfection of Nash Equilibria, 2nd ed., 272 pp. Berlin: Springer.Google Scholar
  27. 27.
    Van Damme, E. 2002. Strategic Equilibrium. In Handbook of Game Theory with Economic Applications, ed. R.J. Aumann, and S. Hart, 1521–1596. Elsevier Science B.V: North-Holland.Google Scholar
  28. 28.
    Hillas, J., and E. Kohlberg. 2002. Foundations of Strategic Equilibrium. In Handbook of Game Theory with Economic Applications, ed. R.J. Aumann, and S. Hart, 1597–1663. Elsevier Science B.V: North-Holland.Google Scholar
  29. 29.
    McKelvey, R.D., and A. McLenan. 1996. Computation of Equilibria in Finite Games. Handbook of Computational Economics, vol. 1, 87–142. Elsevier.Google Scholar
  30. 30.
    Ungureanu, V. Nash equilibrium set function in dyadic mixed-strategy games. Computer Science Journal of Moldova 25, 1 (73): 3–20.Google Scholar
  31. 31.
    Moulen, H. 1985. Théorie des jeux pour l’éqonomie et la politique, Paris, 1981 (in Russian: Game Theory, 200. Moscow: Mir.Google Scholar
  32. 32.
    Gilboa, I., and E. Zemel. 1989. Nash and correlated equilibria: Some complexity considerations. Games and Economic Behaviour 1: 80–93.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Papadimitriou, C.H. 1994. On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and System Sciences 48 (3): 498–532.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Papadimitriou, C. H. 2015. The complexity of computing equilibria. In Handbook of Game Theory with Economic Applications, ed. H. P. Young, and Sh. Zamir, vol. 4, 779–810. Amsterdam: North-Holland.Google Scholar
  35. 35.
    Jansen, M., P. Jurg, and D. Vermeulen. 2002. On the Set of Equilibria of a Bimatrix Game: A Survey. In Chapters in Game Theory, ed. P. Borm, and H.J. Peters, 121–142. In Honour of Stef Tijs. Boston: Kluwer Academic Publishers.Google Scholar
  36. 36.
    Von Stengel, B. 2002. Computing equilibria for two-person games. In Handbook of Game Theory with Economic Applications, ed. R.J. Aumann, and S. Hart, 1723–1759. Elsevier Science B.V: North-Holland.Google Scholar
  37. 37.
    Gass, S., and T. Saaty. 1955. Parametric objective function (part 2)-generalization. Operations Research 3 (4): 395–401.Google Scholar
  38. 38.
    Simons, E. 1962. A note on linear parametric programming. Management Science 8 (3): 355–358.CrossRefGoogle Scholar
  39. 39.
    Gal, T., and J. Nedoma. 1972. Multiparametric linear programming. Management Sciences, Theory Series 18 (7): 406–422.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Gal, T. 1979. Postoptimal Analysis, Parametric Programming, and Related Topics. New-York: McGraw-Hill.zbMATHGoogle Scholar
  41. 41.
    Gal, T. 1995. Postoptimal Analyses, Parametric Programming, and Related Topics: Degeneracy, Multicriteria Decision Making, Redundancy. Berlin: Walter de Gruyter.Google Scholar
  42. 42.
    Gal, T., and H.J. Greenberg (eds.). 1997. Advances in Sensitivity Analysis and Parametric Programming. Norwell, Massachusetts: Kluwer Academic Publishers.zbMATHGoogle Scholar
  43. 43.
    Gal, T. 2016. Parametric programming. Encyclopedia of Operations Research and Management Science 23: 1108–1112.Google Scholar
  44. 44.
    Adler, I., and R. Monteiro. 1992. A geometric view of parametric linear programming. Algorithmica 8: 161–176.MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Borelli, F., A. Bemporad, and M. Morari. 2003. Geometric algorithm for multiparametric linear programming. Journal of Optimization Theory and Applications 118 (3): 515–540.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Monteiro, R.D.C., and S. Mehrotra. 1996. A general parametric analysis approach and its implication to sensitivity analysis in interior point methods. Mathematical Programming 72: 65–82.MathSciNetzbMATHGoogle Scholar
  47. 47.
    Hladik, M. 2010. Multiparametric linear programming: support set and optimal partition invariancy. European Journal of Operational Research 202 (1): 25–31.MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Taha, H.A. 2007. Operations Research: An Introduction, 8th ed., 838 pp. New Jersey, USA: Pearson Education, Inc.Google Scholar
  49. 49.
    Hillier, F.S., and G.J. Lieberman. 2001. Introduction to Operation Research, 1240. New-York: McGraw-Hill.Google Scholar
  50. 50.
    Grassmann, H. 2000. Extension Theory, 411 pp. American Mathematical Society.Google Scholar
  51. 51.
    Greub, W. 1978. Multilinear Algebra, 2nd ed., 315 pp. New-York: Springer.Google Scholar
  52. 52.
    Merriss, R. 1997. Multilinear Algebra, 340. Amsterdam: Gordon and Breach Science Publishers.Google Scholar
  53. 53.
    Northcott, D.G. 1984. Multilinear Algebra, 209. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  54. 54.
    Ding, W., and Y. Wei. 2016. Solving multi-linear systems with \({\mathscr {M}}\) -tensors. Journal of Scientific Computing 8: 1–27.MathSciNetGoogle Scholar
  55. 55.
    Wolfram, S. 2016. An elementary Introduction to the Wolfram Language, XV+324 pp. Champaign, IL: Wolfram Media, Inc.Google Scholar
  56. 56.
    Cox, D.A., J. Little, and D. O’Shea, D. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, XVI+646 pp. Switzerland: Springer International Publishing.Google Scholar
  57. 57.
    Wolfram, S. 2002. A New Kind of Science, 1197. Champaign, IL: Wolfram Media Inc.zbMATHGoogle Scholar
  58. 58.
    Zhukov, Y.M. 2013. An epidemic model of violence and public support in civil war. Conflict Management and Peace Science 30 (1): 24–52.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceMoldova State UniversityChișinăuMoldova

Personalised recommendations