Advertisement

Nash Equilibrium Conditions as Extensions of Some Classical Optimisation Theorems

  • Valeriu UngureanuEmail author
Chapter
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 89)

Abstract

We apply the notion of Lagrange vector-function to analyse strategic (normal) form games (Ungureanu, Lib Math, XXVII:131–140, 2007, [1]). We have the aim to formulate and prove Nash equilibrium conditions for such games and Pareto-Nash equilibrium conditions for multi-criteria strategic form games . Analytical , theoretical and conceptual foundation for all the results of this chapter stands on domains of normal form games, both simultaneous and sequential, and on domain of optimization theory, both single-criterion and multi-criteria.

References

  1. 1.
    Ungureanu, V. 2007. Nash equilibrium conditions for strategic form games, 131–140. XXVII: Libertas Mathematica.zbMATHGoogle Scholar
  2. 2.
    Nash, J. 1951. Noncooperative games. Annals of Mathematics 54 (2): 280–295.CrossRefGoogle Scholar
  3. 3.
    McKelvey, R.D., and A. McLenan. 1996. Computation of equilibria in finite games. Handbook of Computational Economics, vol. 1, 87–142. Amsterdam: Elsevier.Google Scholar
  4. 4.
    Sagaidac, M., and V. Ungureanu. 2004. Operational research, Chişinău: CEP USM, 296 pp. (in Romanian).Google Scholar
  5. 5.
    Ungureanu, V., and A. Botnari. 2005. Nash equilibrium sets in mixed extension of \(2\times 2\times 2\) games. Computer Science Journal of Moldova 13 (1(37)): 13–28.Google Scholar
  6. 6.
    Ungureanu, V., and A. Botnari. 2005. Nash equilibrium sets in mixed extended \(2\times 3\) games. Computer Science Journal of Moldova 13 (2 (38)): 136–150.Google Scholar
  7. 7.
    Ungureanu, V. (2006). Nash equilibrium set computing in finite extended games. Computer Science Journal of Moldova, 14(3 (42)), 345–365.Google Scholar
  8. 8.
    Ungureanu, V. 2008. Solution principles for simultaneous and sequential games mixture. ROMAI Journal 4 (1): 225–242.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Ungureanu, V. (2013). Linear discrete-time Pareto-Nash-Stackelberg control problem and principles for its solving. Computer Science Journal of Moldova, 21(1 (61)), 65–85.Google Scholar
  10. 10.
    Ungureanu, V. 2001. Mathematical programming, Chişinău: USM, 348 pp. (in Romanian).Google Scholar
  11. 11.
    Rockafellar, T. 1970. Convex Analysis, 468. Princeton: Princeton University Press.CrossRefzbMATHGoogle Scholar
  12. 12.
    Soltan, V. (2015). Lectures on Convex Sets (p. X+405). USA: George Mason University, World Scientific Publishing Co. Pte. Ltd.Google Scholar
  13. 13.
    Ehrgott, M. 2005. Multicriteria Optimization, 328. Berlin: Springer.zbMATHGoogle Scholar
  14. 14.
    Ehrgott, M., and X. Gandibleux (eds.). 2002. Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, 519. Kluwer Academic Publishers: Dordrecht.zbMATHGoogle Scholar
  15. 15.
    Miettinen, K.M. 1999. Nonlinear Multiobjective Optimization, 319. Massachusetts: Kluwer Academic Publishers.zbMATHGoogle Scholar
  16. 16.
    Podinovskii, V.V., and V.D. Nogin. 1982. Pareto-Optimal Solutions of the Multi-Criteria Problems. Moscow: Nauka, 255 pp. (in Russian).Google Scholar
  17. 17.
    Blackwell, D. 1956. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics 6: 1–8.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Borm, P., S. Tijs, and J. Van der Aarssen. 1988. Pareto equilibria in multiobjective games. Methods of Operations Research 60: 302–312.zbMATHGoogle Scholar
  19. 19.
    Chinchuluun, A., P.M. Pardalos, A. Migdalas, and L. Pitsoulis (eds.). 2008. Pareto Optimality, Game Theory, and Equilibria. New York: Springer Science + Business Media, 868 pp.Google Scholar
  20. 20.
    Ghose, D., and U.R. Prasad. 1989. Solution concepts in two-person multicriteria games. Journal of Optimization Theory and Applications 63: 167–189.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Shapley, L.S. 1959. Equilibrium points in games with vector payoffs. Naval Research Logistics Quarterly 6: 57–61.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang, S.Y. 1993. Existence of pareto equilibrium. Journal of Optimization Theory and Applications 79: 373–384.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wierzbicki, A.P. 1995. Multiple criteria games – theory and applications. Journal of Systems Engineering and Electronics 6 (2): 65–81.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceMoldova State UniversityChișinăuMoldova

Personalised recommendations