Advertisement

Computing Pareto–Nash Equilibrium Sets in Finite Multi-Objective Mixed-Strategy Games

  • Valeriu UngureanuEmail author
Chapter
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 89)

Abstract

The problem of a Pareto–Nash equilibrium set computing in finite multi-objective mixed-strategy games (Pareto–Nash games) is considered in this chapter. A method for a Pareto–Nash equilibrium set computing is exposed. The method is based on the fact that the set of Pareto–Nash equilibria is identified with the intersection of the graphs of efficient response mappings.

References

  1. 1.
    Ungureanu, V., and A. Botnari. 2005. Nash equilibrium sets in mixed extension of \(2\times 2\times 2\) games. Computer Science Journal of Moldova 13 (1(37)): 13–28.Google Scholar
  2. 2.
    Ungureanu, V., and A. Botnari. 2005. Nash equilibrium sets in mixed extended \(2\times 3\) games. Computer Science Journal of Moldova 13 (2(38)): 136–150.Google Scholar
  3. 3.
    Ungureanu, V. 2006. Nash equilibrium set computing in finite extended games. Computer Science Journal of Moldova 14 (3(42)): 345–365.Google Scholar
  4. 4.
    Ungureanu, V. 2008. Solution principles for simultaneous and sequential games mixture. ROMAI Journal 4 (1): 225–242.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Lozan, V., and V. Ungureanu. 2012. The Set of Pareto-nash Equilibria in Multi-criteria Strategic Games. Computer Science Journal of Moldova 20 (1(58)): 3–15.Google Scholar
  6. 6.
    Pareto, V. 1904. Manuel d’economie politique, 504 pp. Paris: Giard. (in French).Google Scholar
  7. 7.
    Zeleny, M. 1974. Linear Multiobjective Programming, X+222 pp. Berlin: Springer.Google Scholar
  8. 8.
    Cohon, J.L. 1978. Multiobjective Programming and Planning, XIV+333 pp. New York: Academic Press.Google Scholar
  9. 9.
    Jahn, J. 2004. Vector Optimization: Theory, Applications and Extensions, XV+481 pp., Operation Research Berlin: Springer.Google Scholar
  10. 10.
    Ehrgott, M. 2005. Multicriteria optimization, 328 pp. Berlin: Springer.Google Scholar
  11. 11.
    Blackwell, D. 1956. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics 6: 1–8.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Borm, P., S. Tijs, and J. Van der Aarssen. 1988. Pareto equilibria in multiobjective games. Methods of Operations Research 60: 302–312.zbMATHGoogle Scholar
  13. 13.
    Shapley, L.S. 1959. Equilibrium Points in Games with Vector Payoffs. Naval Research Logistics Quarterly 6: 57–61.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hermelin, D., C.C. Huang, S. Kratsch, and M. Wahlström. 2013. Parameterized two-player nash equilibrium. Algorithmica 65 (4): 802–816.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Daskalakis, C., P.W. Goldberg, and C.H. Papadimitriou. 2009. The complexity of computing a Nash equilibrium. Communications of the ACM 52 (2): 89–97.CrossRefzbMATHGoogle Scholar
  16. 16.
    Papadimitriou, C.H. 1994. On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence. Journal of Computer and System Sciences 48 (3): 498–532.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nash, J. 1951. Noncooperative games. Annals of Mathematics 54 (2): 280–295.CrossRefGoogle Scholar
  18. 18.
    Von Stengel, B. 2002. Computing equilibria for two-person games. In Handbook of Game Theory with Economic Applications, ed. R.J. Aumann, and S. Hart, 1723–1759. Elsevier Science B.V: North-Holland.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceMoldova State UniversityChișinăuMoldova

Personalised recommendations