• Valeriu UngureanuEmail author
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 89)


The essence of Game Theory springs from the cores of conflict and cooperation notions. Life existence resides inevitably in conflict and cooperation arising. What are the means of these concepts? Why they are so important? How and where conflict and cooperation appear? Who are the main actors in the situations of conflict and cooperation? What are the roles of the actors? What problems must they solve? We can continue the sequence of questions, but it’s more appropriate to ask and respond to them at the right moments. So, let us highlight briefly the answers to these questions and let us give a general introductory description of game theory.


  1. 1.
    Bartos, O.J., and P. Wehr. 2002. Using Conflict Theory. Cambridge: Cambridge University Press, XII+219 pp.Google Scholar
  2. 2.
    Deutch, M., P.T. Coleman, and E.C. Marcus (eds.). 2006. The Handbook of Conflict Resolution: Theory and Practice. San Francisco: Jossey-Bass, A Wiley Imprint, XIV+940 pp.Google Scholar
  3. 3.
    Rex, J. 1961. Key Problems of Sociological Theory, 145. London: Routledge and Kegan Paul.CrossRefGoogle Scholar
  4. 4.
    Turner, J.H. (ed.). 2006. Handbook of Sociological Theory. New York: Springer Science+Business Media, XI+745 pp.Google Scholar
  5. 5.
    Dahrendorf, R. 1959. Class and Class Conflict in Industrial Society. Stanford: Stanford University Press, XVI+336 pp.Google Scholar
  6. 6.
    Aumann, R.J. 1989. Game theory. In The New Palgrave: Game Theory, ed. J. Eatwell, M. Milgate, and P. Newman, 1–53. London: The Macmillan Press Limited.Google Scholar
  7. 7.
    Gaindric, C., V. Ungureanu, and D. Zaporojan. 1993. An interactive decision support system for selection of scientific and technical projects. Computer Science Journal of Moldova 1 (2(2)): 105–109.Google Scholar
  8. 8.
    Shoham, Y., and K. Leyton-Brown. 2009. Multi-agent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, 532. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  9. 9.
    Osborne, M.J. 2009. An Introduction to Game Theory, 685. Oxford: Oxford University Press, International Edition.Google Scholar
  10. 10.
    Tadelis, S. 2013. Game Theory: An Introduction. Princeton and Oxford: Princeton University Press, XVI+396 pp.Google Scholar
  11. 11.
    Zermelo, E. 1904. Proof that every set can be well-ordered (Beweis, daßjede Menge wohlgeordnet werden kann). Mathematische Annalen 59: 514–516. (in German).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zermelo, E. 1908. Investigations in the foundations of set theory I (Neuer Beweis für die Möglichkeit einer Wohlordnung). Mathematische Annalen 65: 107–128. (in German).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dantzig, G.B., and M.N. Thapa. 1997. Linear Programming 1: Introduction, 474. New York: Springer.zbMATHGoogle Scholar
  14. 14.
    Dantzig, G.B., and M.N. Thapa. 2003. Linear Programming 2: Theory and Extensions, 475. New York: Springer.zbMATHGoogle Scholar
  15. 15.
    Nemirovsky, A., and D. Yudin. 1983. Problem Complexity and Method Efficiency in Optimization, 404. New York: Wiley.Google Scholar
  16. 16.
    Nesterov, Y., and A. Nemirovskii. 1994. Interior-Point Polynomial Algorithms in Convex Programming. Philadelphia: SIAM, IX+405 pp.Google Scholar
  17. 17.
    Boyd, S.P., and L. Vandenberghe. 2009. Convex Optimization. Cambridge: Cambridge University Press, XIV+716 pp.Google Scholar
  18. 18.
    Bertsekas, D.P., A. Nedic, and A.E. Ozdaglar. 2015. Convex Analysis and Optimization. Belmont, Massachusetts: Athena Scientific, XV+534 pp.Google Scholar
  19. 19.
    Pareto, V. 1904. Manuel d’economie politique. Paris: Giard, 504 pp. (in French).Google Scholar
  20. 20.
    Yudin, D.B. 1984. Generalized mathematical programming. Economics and Mathematical Methods 20 (1): 148–167.MathSciNetzbMATHGoogle Scholar
  21. 21.
    Tsoi, E.V., and D.B. Yudin. 1989. Generalized convex programming. Avtomat. i Telemekh. 3: 44–55.MathSciNetGoogle Scholar
  22. 22.
    Figueira, J., S. Greco, and M. Ehrgott (eds.). 2005. Multiple Criteria Decision Analysis: State of the Art Surveys. Boston: Springer Science and Business Media, Inc., XXXVI+1045 pp.Google Scholar
  23. 23.
    Pascal, B. 1958. Pascal’s Pensées. New York: E.P. Dutton & Co., Inc., XXI+297 pp.Google Scholar
  24. 24.
    Brams, S.J. 2011. Game Theory and the Humanities: Bridging Two Worlds. Cambridge, Massachusetts: MIT Press, XIV+319 pp.Google Scholar
  25. 25.
    Jordan, J. 2006. Pascal’s Wager: Pragmatic Arguments and Belief in God. Oxford: Oxford University Press, XII+227 pp.Google Scholar
  26. 26.
    Küng, H. 1980. Does God Exist? An Answer for Today. London: SCM Press, XXIV+839 pp.Google Scholar
  27. 27.
    Grabisch, M. 2016. Set Functions, Games and Capacities in Decision Making. Switzerland: Springer, XVI+473 pp.Google Scholar
  28. 28.
    Russell, B. 1951. What Desires Are Politically Important? 259–270. Nobel Prize Lectures: Literature, 1901–1967, Nobel Lecture, 11 December 1950. Stockholm: P.A. Norstedt.Google Scholar
  29. 29.
    Eastman, W.N. 2015. Why Business Ethics Matters: The Logic of Moral Emotions in Game Theory. Hampshire: Palgrave Macmillan, XIX+203 pp.Google Scholar
  30. 30.
    Maynard Smith, J., and G.R. Price. 1973. The logic of animal conflict. Nature 246: 15–18.CrossRefzbMATHGoogle Scholar
  31. 31.
    Tanimoto, J. 2015. Fundamentals of Evolutionary Game Theory and Its Applications. Tokyo: Springer, XIII+214 pp.Google Scholar
  32. 32.
    Schecter, S., and H. Gintis. 2016. Game Theory in Action an Introduction to Classical and Evolutionary Models. Princeton: Princeton University Press, XIV+274 pp.Google Scholar
  33. 33.
    Camerer, C.F. 2003. Behavioral Game Theory: Experiments in Strategic Interaction, 495. Princeton: Princeton University Press.zbMATHGoogle Scholar
  34. 34.
    Gintis, H. 2009. The Bounds of Reason: Game Theory and the Unification of the Behavioral Sciences. Princeton and Oxford: Princeton University Press, XVIII+286 pp.Google Scholar
  35. 35.
    Tremblay, V.J., and C.H. Tremblay. 2012. New Perspectives on Industrial Organization with Contributions from Behavioral Economics and Game Theory. New York: Springer, XXVI+811 pp.Google Scholar
  36. 36.
    Hausken, K. 1996. Self-interest and sympathy in economic behaviour. International Journal of Economics and Business Research 23 (7): 4–24.Google Scholar
  37. 37.
    Perrow, C. 1986. Complex Organizations. New York: Random House, X+307 pp.Google Scholar
  38. 38.
    Schelling, T.C. 1980. The Strategy of Conflict. Cambridge, Massachusetts: Harvard University Press, IX+309 pp.Google Scholar
  39. 39.
    Dodge, R.V. 2012. Sheling’s Game Theory: How to Make Decisions. Oxford: Oxford University Press, XII+292 pp.Google Scholar
  40. 40.
    Carmichael, F. 2005. A Guide to Game Theory. Harlow: Pearson Education, XV+286 pp.Google Scholar
  41. 41.
    Maschler, M., E. Solan, and Sh. Zamir. 2013. Game Theory. Cambridge: Cambridge University Press, XXVI+979 pp.Google Scholar
  42. 42.
    Matsumoto, A., and F. Szidarovszky. 2016. Game Theory and Its Applications. Tokyo: Springer, XIV+268 pp.Google Scholar
  43. 43.
    Mazalov, V. 2014. Mathematical Game Theory and Its Applications. Tokyo: Wiley, XIV+414 pp.Google Scholar
  44. 44.
    Myerson, R.B. 1997. Game Theory: Analysis of Conflict. Cambridge, Massachusetts: Harvard University Press, XVI+568 pp.Google Scholar
  45. 45.
    Straffin, Ph.D. 1993. Game Theory and Strategy. Washington: The Mathematical Association of America, X+244 pp.Google Scholar
  46. 46.
    Narahari, Y. 2014. Game Theory and Mechanism Design. New York: IISc Press and World Scientific, XL+492 pp.Google Scholar
  47. 47.
    Nisan, N., T. Roughgarden, E. Tardos, and V.V. Vazirani (eds.). 2007. Algorithmic Game Theory, 775. Cambridge University Press: Cambridge.Google Scholar
  48. 48.
    Petrosyan, L.A., and N.A. Zenkevich. 2016. Game Theory, 2nd ed. New Jersey: World Scientific, XII+551 pp.Google Scholar
  49. 49.
    Umbhauer, G. 2016. Game Theory and Exercises. New York: Routledge, XX+442 pp.Google Scholar
  50. 50.
    Watson, J. 2013. Strategy: An Introduction to Game Theory. New York: W. W. Norton & Company, XV+491 pp.Google Scholar
  51. 51.
    Borel, E. 1921. La théorie du jeu les équation intégrales á noyau symétrique gauche. Compte Rendus Académie des Science 173: 1304–1308.zbMATHGoogle Scholar
  52. 52.
    Borel, E. 1923. Sur les jeu où intervient l’hasard et l’habileté des joueurs. Association Française pour l’Advancement des Sciences, 79–85.Google Scholar
  53. 53.
    Borel, E. 1924. Sur les jeu où intervient l’hasard et l’habileté des joueurs. Theorie des Probabilités. Paris: Librairie Scientifique.Google Scholar
  54. 54.
    Von Neumann, J. 1928. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100: 295–320. (in German).CrossRefGoogle Scholar
  55. 55.
    Von Neumann, J., and O. Morgenstern. 1944. Theory of Games and Economic Behavior. Princeton: Annals Princeton University Press; 2nd ed., 1947, 674 pp.Google Scholar
  56. 56.
    Luce, D.R., and H. Raiffa. 1957. Games and Decisions: Introduction and Critical Survey. New York: Wiley, XX+509 pp.Google Scholar
  57. 57.
    Kelly, A. 2003. Decision Making Using Game Theory: An Introduction for Managers. Cambridge: Cambridge University Press, X+204 pp.Google Scholar
  58. 58.
    Geçkil, I.K., and P.L. Anderson. 2010. Applied Game Theory and Strategic Behaviour. Boca Raton: CRC Press, XIX+198 pp.Google Scholar
  59. 59.
    Dimand, M.A., and R. Dimand. 2002. The History of Game Theory, Volume 1: From the Beginning to 1945. London: Routledge, X+189 pp.Google Scholar
  60. 60.
    McCain, R.A. 2009. Game Theory and Public Policy. Cheltenham: Edward Elgar, VI+262 pp.Google Scholar
  61. 61.
    Bryson Jr., A.E. 1996. Optimal control - 1950 to 1985. IEEE Control Systems 16 (3): 26–33.CrossRefGoogle Scholar
  62. 62.
    Bellman, R. 1957. Dynamic Programming, 365. New Jersey: Princeton University Press.zbMATHGoogle Scholar
  63. 63.
    Pontryagin, L.S., V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko. 1961. Mathematical Theory of Optimal Processes. Moscow: Nauka, 393 pp. (in Russian).Google Scholar
  64. 64.
    Clarke, F.H. 1989. Methods of Dynamic and Nonsmooth Optimization. CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia: SIAM, VI+91 pp.Google Scholar
  65. 65.
    McShane, E.J. 1939. On multipliers for Lagrange problems. American Journal of Mathematics 61 (4): 809–819.MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Breitner, M.H. 2005. The genesis of differential games in light of Isaacs? Contributions. Journal of Optimization Theory and Applications 124 (3): 523–559.MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Isaacs, R. 1965. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. Berlin: Wiley, XXIII+385 pp.Google Scholar
  68. 68.
    Başar, T., and G.J. Olsder. 1999. Dynamic Noncooperative Game Theory. Philadelphia: SIAM: Society for Industrial and Applied Mathematics, 536 pp.Google Scholar
  69. 69.
    Pontryagin, L.S. 1998. The Maximum Principle. Moscow: Mathematical Education and Formation Fond, 71 pp. (in Russian).Google Scholar
  70. 70.
    Vasil’ev, F.P. 2002. Optimization Methods. Moscow: Factorial Press, 825 pp. (in Russian).Google Scholar
  71. 71.
    Osborne, M.J., and A. Rubinstein. 1994. A Course in Game Theory, 373. Cambridge: The MIT Press.zbMATHGoogle Scholar
  72. 72.
    Bensoussan, A., J. Frehse, and Ph. Yam. 2013. Mean Field Games and Mean Field Type Control Theory. New York: Springer, X+128 pp.Google Scholar
  73. 73.
    Clerbout, N., and Sh. Rahman. 2015. Linking Game-Theoretical Approaches with Constructive Type Theory: Dialogical Strategies, CTT Demonstrations and the Axiom of Choice. Heidelberg: Springer, XIX+99 pp.Google Scholar
  74. 74.
    Sandholm, W.H. 2015. Population games and deterministic evolutionary dynamics. In Handbook of Game Theory with Economic Applications, vol. 4, ed. H. Peyton Young, and Sh. Zamir, 703–778. Amsterdam: North-Holland.Google Scholar
  75. 75.
    Hammerstein, P., and O. Leimar. 2015. Evolutionary game theory in biology. In Handbook of Game Theory with Economic Applications, vol. 4, ed. H. Peyton Young, and Sh. Zamir, 574–617. Amsterdam: North-Holland.Google Scholar
  76. 76.
    Thomas, G.H. 2006. Geometry, Language and Strategy, vol. 37, 386. Series on Knots and Everything. New Jersey: World Scientific.Google Scholar
  77. 77.
    Thomas, G.H. 2017. Geometry, Language and Strategy, Vol. 2: The Dynamics of Decision Processes. New Jersey: World Scientific, 816 pp.Google Scholar
  78. 78.
    Avenhaus, R., and I.W. Zartman (eds.). 2007. Diplomacy Games: Formal Models and International Negotiations. Berlin: Springer, XIX+350 pp.Google Scholar
  79. 79.
    Poundstone, W. 1992. Prisoner’s Dilemma. New York: Anchor Books, XI+294 pp.Google Scholar
  80. 80.
    Mirowski, P. 2002. Machine Dreams: Economics Becomes a Cyborg Science. Cambridge: Cambridge University Press, XIV+655 pp.Google Scholar
  81. 81.
    McAdams, D. 2014. Game-Changer: Game Theory and the Art of Transforming Strategic Situations, 304. New York: W. W. Norton & Company.Google Scholar
  82. 82.
    Sagaidac, M., and V. Ungureanu. 2004. Operational Research. Chişinău: CEP USM, 296 pp. (in Romanian).Google Scholar
  83. 83.
    Cooper, R.W. 1999. Coordination Games: Complementarities and Macroeconomics. Cambridge: Cambridge University Press, XIV+163 pp.Google Scholar
  84. 84.
    Jackson, M.O., and Y. Zenou. 2015. Games on networks. In Handbook of Game Theory with Economic Applications, vol. 4, ed. H. Peyton Young, and Sh. Zamir, 95–163. Amsterdam: North-Holland.Google Scholar
  85. 85.
    Rousseau, J.-J. 1987. Discourse on the origin and foundations of inequality among men. Trans. and ed. Donald A. Cress, The Basic Political Writings of Jean-Jacques Rousseau, 37–81. Indianapolis: Hackett Publishing Company Inc.Google Scholar
  86. 86.
    Russell, B. 2010. Common Sense and Nuclear Warfare, First published 1959. London: Routledge, XXXII+75 pp.Google Scholar
  87. 87.
    Smith, M.J., and G.R. Price. 1973. The logic of animal conflict. Nature 246: 15–18.CrossRefzbMATHGoogle Scholar
  88. 88.
    Bramoullé, Y., D. López-Pintadoz, S. Goyalx, and F. Vega-Redondo. 2004. Network formation and anti-coordination games. International Journal of Game Theory 33 (1): 1–19.MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Kun, J., B. Powers, and L. Reyzin. 2013. Anti-coordination games and stable graph colorings. In Algorithmic Game Theory. SAGT 2013, vol. 8146, ed. B. Vöcking, 122–133. Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  90. 90.
    Nash, J. 1951. Noncooperative games. Annals of Mathematics 54 (2): 280–295.CrossRefGoogle Scholar
  91. 91.
    Fisher, L. 2008. Rock, Paper, Scissors: Game Theory in Everyday Life. New York: Basic Books, X+265 pp.Google Scholar
  92. 92.
    Lozovanu, D., and V. Ungureanu. 1989. On the nesting of convex polyhedral sets defined by systems of linear inequalities. Kibernetika (Kiev) 135 (1): 104–107.MathSciNetGoogle Scholar
  93. 93.
    Lozovanu, D., and V. Ungureanu. 1989. An algorithm for testing the embeddability of a k-dimensional unit cube in an orthogonal projection of a polyhedral set defined by a system of linear inequalities. Mat. Issled., Mathematical Modeling and Optimization 162 (110): 67–78 (in Russian).Google Scholar
  94. 94.
    Ungureanu, V. 1989. NP-hardness of the problem of testing the embeddability of a k-dimensional unit cube in an orthogonal projection of a convex polyhedral set. Mat. Issled., Mathematical Modeling and Optimization 16 (110): 120–128 (in Russian).Google Scholar
  95. 95.
    Gaindric, C., and V. Ungureanu. September 1989. Systems of linear inequalities with right-hand parametric parts and some optimization problems. Optimization Methods and Their Applications, Book of Abstracts of the International School and Seminar, Irkutsk 10–19: 53–54.Google Scholar
  96. 96.
    Schelling, T.C. 2001. Commitment: Deliberate versus involuntary. In Evolution and the Capacity for Commitment, ed. R.M. Nesse, 48–56. New York: Russell Sage Press.Google Scholar
  97. 97.
    Nesse, R.M. (ed.). 2001. Evolution and the Capacity for Commitment. New York: Russell Sage Press, XVIII+334 pp.Google Scholar
  98. 98.
    Hirshleifer, J. 2001. Game-theoretic interpretations of commitment. In Evolution and the Capacity for Commitment, ed. R.M. Nesse, 77–94. New York: Russell Sage Press.Google Scholar
  99. 99.
    Hurwicz, L., and S. Reiter. 2006. Designing Economic Mechanisms. Cambridge: Cambridge University Press, X+344 pp.Google Scholar
  100. 100.
    Williams, S.R. 2008. Communication in Mechanism Design: A Differential Approach. Cambridge: Cambridge University Press, XV+197 pp.Google Scholar
  101. 101.
    Vohra, R.V. 2011. Mechanism Design: A Linear Programming Approach. Cambridge: Cambridge University Press, XV+173 pp.Google Scholar
  102. 102.
    Börgers, T. with a chapter by Daniel, Krähmer, and Roland, Strausz. 2015. An Introduction to the Theory of Mechanism Design. Oxford: Oxford University Press, XVI+246 pp.Google Scholar
  103. 103.
    Von Stackelberg, H. Marktform und Gleichgewicht (Market Structure and Equilibrium), Vienna: Springer Verlag, 1934, XIV+134 pp. (in German).Google Scholar
  104. 104.
    Smol’yakov, È.R. 1986. Equilibrium Models in Which the Participants have Different Interests (Ravnovesnye modeli pri nesovpadayushchikh interesakh uchastnikov). Moskva: Nauka, 224 pp. (in Russian).Google Scholar
  105. 105.
    Smol’yakov, È.R. 2000. Theory of Conflicts and Differential Games (Teoriya antagonizmov i differentsial’nye igry). Moskva: Èditorial URSS, 159 pp. (in Russian).Google Scholar
  106. 106.
    Maskin, E. 1999. Nash equilibrium and welfare optimality. Review of Economic Studies 66 (1): 23–38.MathSciNetCrossRefzbMATHGoogle Scholar
  107. 107.
    Myerson, R.B. 1999. Nash equilibrium and the history of economic theory. Journal of Economic Literature 37 (3): 1067–1082.CrossRefGoogle Scholar
  108. 108.
    Govindan, S., and R. Wilson. 2005. Essential equilibria. Proceedings of the National Academy of Sciences of the United States of America 102 (43): 15706–15711.MathSciNetCrossRefzbMATHGoogle Scholar
  109. 109.
    Aumann, R.J. 1974. Subjectivity and correlation in randomized strategies. Journal of Mathematical Economics 1: 67–96.MathSciNetCrossRefzbMATHGoogle Scholar
  110. 110.
    Hart, S., and A. Mas-Colell. 2013. Simple Adaptive Strategies: From Regret-Matching to Uncoupled Dynamics. New Jersey: World Scientific, XXXVIII+296 pp.Google Scholar
  111. 111.
    Apt, K.R., F. Rossi, and K.B. Venable. 2008. Comparing the notions of optimality in CP-nets, strategic games and soft constraints. Annals of Mathematics and Artificial Intelligence 52 (1): 25–54.MathSciNetCrossRefzbMATHGoogle Scholar
  112. 112.
    Shapley, L.S. 1956. Equilibrium points in games with vector payoffs, Rand Corporation Research Memorandum RM-1818, I–III, 1–7.Google Scholar
  113. 113.
    Shapley, L.S. 1959. Equilibrium points in games with vector payoffs. Naval Research Logistics Quarterly 6: 57–61.MathSciNetCrossRefGoogle Scholar
  114. 114.
    Blackwell, D. 1956. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics 6: 1–8.MathSciNetCrossRefzbMATHGoogle Scholar
  115. 115.
    Zhao, Y.M. 2017. Three little-known and yet still significant contributions of Lloyd Shapley. Games and Economic Behavior, 12 May 2017, 1–26.Google Scholar
  116. 116.
    Mármol, A.M., L. Monroy, M.A. Caraballo, and A. Zapata. 2017. Equilibria with vector-valued utilities and preference information. The analysis of a mixed duopoly. Theory and Decision, 27 March 2017, 1–19.Google Scholar
  117. 117.
    Hausken, K., and R. Cressman. 2004. Formalization of multi-level games. International Game Theory Review 6 (2): 195–221.MathSciNetCrossRefzbMATHGoogle Scholar
  118. 118.
    Kuhn, H.W. 1950. Extensive games. Proceedings of the National Academy of Sciences of the United States of America 36: 570–576.MathSciNetCrossRefzbMATHGoogle Scholar
  119. 119.
    Kuhn, H.W. 1953. Extensive games and the problem of information. In Contributions to the Theory of Games, Vol. II, vol. 28, ed. H. Kuhn, and A. Tucker, 217–243. Annals of Mathematics Study. Princeton: Princeton University Press.Google Scholar
  120. 120.
    Aumann, R.J. 2003. Presidential address. Games and Economic Behavior 45: 2–14.CrossRefGoogle Scholar
  121. 121.
    Mas-Colell, A., M.D. Whinston, and J.R. Green. 1991. Microeconomics. Oxford: Oxford University Press, XVII+977 pp.Google Scholar
  122. 122.
    Flåm, S.D. 2005. Production games and price dynamics. In Dynamic Games: Theory and Applications, ed. A. Haurie, and G. Zaccour, 79–92. New York: Springer.CrossRefGoogle Scholar
  123. 123.
    Urai, K. 2010. Fixed Points and Economic Equilibria. New Jersey: World Scientific, XVIII+292 pp.Google Scholar
  124. 124.
    Hausken, K. 2011. An equilibrium model of advertising, production and exchange. International Journal of Economics and Business Research 3 (4): 407–442.MathSciNetCrossRefGoogle Scholar
  125. 125.
    Milgrom, P. 2004. Putting Auction Theory to Work. Cambridge: Cambridge University Press, XXIV+368 pp.Google Scholar
  126. 126.
    Mailath, G.J., and L. Samuelson. 2006. Repeated Games and Reputations: Long-Run Relationships. New York: Oxford University Press, XVIII+645 pp.Google Scholar
  127. 127.
    Kandori, M., and S. Obayashi. 2014. Labor union members play an OLG repeated game. Proceedings of the National Academy of Sciences 111 (Suppl. 3): 10802–10809.MathSciNetCrossRefzbMATHGoogle Scholar
  128. 128.
    Apt, K.R., and E. Grädel. 2011. Lectures in Game Theory for Computer Scientists. Cambridge: Cambridge University Press, XII+295 pp.Google Scholar
  129. 129.
    Stirling, W.C. 2003. Satisficing Games and Decision Making: With Applications to Engineering and Computer Science. Cambridge: Cambridge University Press, XVIII+249 pp.Google Scholar
  130. 130.
    Anderson, E. 2010. Social Media Marketing: Game Theory and the Emergence of Collaboration. Berlin: Springer, X+188 pp.Google Scholar
  131. 131.
    Bossy, M., N. Maïzi, G.J. Olsder, O. Pourtallier, and E. Tanré. 2005. Electricity prices in a game theory context. In Dynamic Games: Theory and Applications, ed. A. Haurie, and G. Zaccour, 135–139. New York: Springer.CrossRefGoogle Scholar
  132. 132.
    Karray, S., and G. Zaccour. 2005. A differential game of advertising for national and store brands. In Dynamic Games: Theory and Applications, ed. A. Haurie, and G. Zaccour, 213–229. New York: Springer.CrossRefGoogle Scholar
  133. 133.
    Martín-Herrän, G., and S. Taboubi. 2005. Incentive strategies for shelf-space allocation in duopolies. In Dynamic Games: Theory and Applications, ed. A. Haurie, and G. Zaccour, 231–253. New York: Springer.CrossRefGoogle Scholar
  134. 134.
    Benyoucef, L., J.-C. Hennet, and M.K. Tiwari (eds.). 2014. Applications of Multi-criteria and Game Theory Approaches: Manufacturing and Logistics. New Jersey: Springer, XVI+408 pp.Google Scholar
  135. 135.
    Benz, A., C. Ebert, G. Jäger, and R. Van Rooij (eds.). 2011. Language, Games, and Evolution Trends in Current Research on Language and Game Theory, 188. Springer: Berlin.Google Scholar
  136. 136.
    Clark, R. 2012. Meaningful Games: Exploring Language with Game Theory. Cambridge: The MIT Press, XVIII+354 pp.Google Scholar
  137. 137.
    Perea, A. 2012. Epistemic Game Theory: Reasoning and Choice. Cambridge: Cambridge University Press, XVIII+561 pp.Google Scholar
  138. 138.
    Brandenburger, A. (ed.). 2014. The Language of Game Theory: Putting Epistemics into the Mathematics of Games. New Jersey: World Scientific, XXXIV+263 pp.Google Scholar
  139. 139.
    Witzel, S.A. 2009. Knowledge and games: Theory and implementation, Ph.D. dissertation, Amsterdam: Institute for Logic, Language and Computation, 162 pp.Google Scholar
  140. 140.
    Stirling, W.C. 2012. Theory of Conditional Games. Cambridge: Cambridge University Press, XIV+236 pp.Google Scholar
  141. 141.
    Broom, M., and J. Rychtář. 2013. Game-Theoretical Models in Biology. Boca Raton: CRC Press, XXVI+488 pp.Google Scholar
  142. 142.
    Broom, M., and J. Rychtář. 2016. Nonlinear and multiplayer evolutionary games. In Advances in Dynamic and Evolutionary Games: Theory, Applications, and Numerical Methods, ed. F. Frank Thuijsman, and F. Wagener, 95–115. Annals of the International Society of Dynamic Games. Boston: Birkhäuser.Google Scholar
  143. 143.
    Abrudan, M., L. You, K. Staňková, and F. Thuijsman. 2016. A game theoretical approach to microbial coexistence. In Advances in Dynamic and Evolutionary Games: Theory, Applications, and Numerical Methods, vol. 14, ed. F. Frank Thuijsman, and F. Wagener, 267–282. Annals of the International Society of Dynamic Games. Boston: Birkhäuser.Google Scholar
  144. 144.
    Andrey, C., O. Bahn, and A. Haurie. 2016. Computing \(\alpha \)-robust equilibria in two integrated assessment models for climate change. In Advances in Dynamic and Evolutionary Games: Theory, Applications, and Numerical Methods, vol. 14, ed. F. Frank Thuijsman, and F. Wagener, 283–300. Annals of the International Society of Dynamic Games. Boston: Birkhäuser.Google Scholar
  145. 145.
    Babonneau, F., A. Haurie, and M. Vielle. 2016. A robust noncooperative meta-game for climate negotiation in Europe. In Advances in Dynamic and Evolutionary Games: Theory, Applications, and Numerical Methods, vol. 14, ed. F. Frank Thuijsman, and F. Wagener, 301–319. Annals of the International Society of Dynamic Games. Boston: Birkhäuser.Google Scholar
  146. 146.
    Haurie, A. 2005. A two-timescale stochastic game framework for climate change policy assessment. In Dynamic Games: Theory and Applications, ed. A. Haurie, and G. Zaccour, 193–211. New York: Springer.CrossRefGoogle Scholar
  147. 147.
    Chinchuluun, A., P.M. Pardalos, A. Migdalas, and L. Pitsoulis (eds.). 2008. Pareto Optimality, Game Theory, and Equilibria. New York: Springer Science + Business Media, 868 pp.Google Scholar
  148. 148.
    Binmore, K. 2007. Game Theory: A Very Short Introduction. Oxford: Oxford University Press, XIV+186 pp.Google Scholar
  149. 149.
    Kim, S. 2014. Game Theory Applications in Network Design. Hershey: IGI Global, XXII+500 pp.Google Scholar
  150. 150.
    Haunschmied, J., V.M. Veliov, and S. Wrzaczek (eds.). 2014. Dynamic Games in Economics. Berlin: Springer, XII+315 pp.Google Scholar
  151. 151.
    Jørgensen, S., M. Quincampoix, and T.L. Vincent (eds.). 2007. Advances in Dynamic Game Theory: Numerical Methods, Algorithms, and Applications to Ecology and Economics. Boston: Birkhäuser, XXII+717 pp.Google Scholar
  152. 152.
    Long, N.V. 2010. A Survey of Dynamic Games in Economics. New Jersey: World Scientific, XIV+275 pp.Google Scholar
  153. 153.
    Chikriy, A.A. 1992. Conflict-Controlled Processes. Kiev: Naukova Dumka, 384 pp. (in Russian).Google Scholar
  154. 154.
    Böhme, T.J., and B. Frank. 2017. Hybrid Systems, Optimal Control and Hybrid Vehicles: Theory, Methods and Applications. Switzerland: Springer, XXXIII+530 pp.Google Scholar
  155. 155.
    Tang, W., and Y.J. Zhang. 2017. Optimal Charging Control of Electric Vehicles in Smart Grids. Switzerland: Springer, XI+106 pp.Google Scholar
  156. 156.
    Kim, B. 2017. Optimal Control Applications for Operations Strategy. Singapore: Springer, XI+223 pp.Google Scholar
  157. 157.
    Schättler, H., and U. Ledzewicz. 2015. Optimal Control for Mathematical Models of Cancer Therapies: An Application of Geometric Methods. New York: Springer, XIX+496 pp.Google Scholar
  158. 158.
    Badescu, V. 2017. Optimal Control in Thermal Engineering. Switzerland: Springer, XV+588 pp.Google Scholar
  159. 159.
    Petrosyan, L.A. 2016. Dynamic games with perfect information. In Advances in Dynamic and Evolutionary Games: Theory, Applications, and Numerical Methods, ed. F. Thuijsman, and F. Wagener, 1–26. Boston: Birkhäuser.Google Scholar
  160. 160.
    Shinar, J., V.Y. Glizer, and V. Turetsky. 2016. Pursuit-evasion game of kind between hybrid players. In Advances in Dynamic and Evolutionary Games: Theory, Applications, and Numerical Methods, ed. F. Thuijsman, and F. Wagener, 187–208. Boston: Birkhäuser.CrossRefGoogle Scholar
  161. 161.
    Moiseev, N.N. 1975. Elements of the Optimal System Theory. Moscow: Nauka, 526 pp. (in Russian).Google Scholar
  162. 162.
    Terrell, W.J. 1999. Some fundamental control theory I: Controllability, observability, and duality. The American Mathematical Monthly 106 (8): 705–719.MathSciNetCrossRefzbMATHGoogle Scholar
  163. 163.
    Terrell, W.J. 1999. Some fundamental control theory II: Feedback linearization of single input nonlinear systems. The American Mathematical Monthly 106 (9): 812–828.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceMoldova State UniversityChișinăuMoldova

Personalised recommendations