Skip to main content

The Antares Explosion Observed by the USArray: An Unprecedented Collection of Infrasound Phases Recorded from the Same Event

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

On October 28, 2014, the launch of the Antares 130 rocket failed just after liftoff from Wallops Flight Facility, Virginia. In addition to one infrasound station of the International Monitoring Network (IMS), the explosion was largely recorded by the Transportable USArray (TA) up to distances of 1000 km. Overall, 180 infrasound arrivals were identified as tropospheric, stratospheric or thermospheric phases on 74 low-frequency sensors of the TA. The range of celerity for those phases is exceptionally broad, from 360 m/s for some tropospheric arrivals, down to 160 m/s for some thermospheric arrivals. Ray tracing simulations provide a consistent description of infrasound propagation. Using phase-dependent propagation tables, the source location is found 2 km east of ground truth information with a difference in origin time of 2 s. The detection capability of the TA at the time of the event is quantified using a frequency-dependent semiempirical attenuation. By accounting for geometrical spreading and dissipation, an accurate picture of the ground return footprint of stratospheric arrivals as well as the wave attenuation are recovered. The high-quality data and unprecedented amount and variety of observed infrasound phases represents a unique dataset for statistically evaluating atmospheric models, numerical propagation modeling, and localization methods which are used as effective verification tools for the nuclear explosion monitoring regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcoverro B, Le Pichon A (2005) Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance. J Acoust Soc Am 117:1717–1727. https://doi.org/10.1121/1.1804966

    Article  Google Scholar 

  • Assink JD, Waxler R, Drob D (2012) On the sensitivity of infrasonic traveltimes in the equatorial region to the atmospheric tides. J Geophys Res 117:D01110. https://doi.org/10.1029/2011JD016107

    Article  Google Scholar 

  • Assink J, Smets P, Marcillo O, Weemstra C, Lalande J-M, Waxler R, Evers L (2019) Advances in infrasonic remote sensing methods. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632

    Google Scholar 

  • Brachet N, Brown D, Le Bras R, Cansi Y, Mialle P, Coyne J (2009) Monitoring the Earth’s atmosphere with the global IMS infrasound network. In: Le Pichon A, Blanc E, Hauchecorne A (ed) Infrasound monitoring for atmospheric studies. Springer, New York, pp 77–118. ISBN 978–1-4020-9508-5

    Google Scholar 

  • Brown DJ et al (2002) Infrasonic signal detection and source location at the prototype international data center, pure and appl. Geophys. 159:1081–1125

    Google Scholar 

  • Candel SM (1977) Numerical solution of conservation equations arising in linear wave theory: application to aeroacoustics. J Fluid Mech 83(3):465–493

    Article  Google Scholar 

  • Cansi Y (1995) An automatic seismic event processing for detection and location—the PMCC method. Geophys Res Lett 22(9):1021–1024

    Article  Google Scholar 

  • Ceranna L, Le Pichon A, Green DN, Mialle P (2009) The Buncefield explosion: a benchmark for infrasound analysis across central Europe. Geophys J Int 177:491–508

    Article  Google Scholar 

  • Che IY, Le Pichon A, Kim K, Shin IC (2017) Assessing the detection capability of a dense infrasound network in the southern Korean Peninsula. Geophys J Int 210:1105–1114. https://doi.org/10.1093/gji/ggx222

    Article  Google Scholar 

  • Chunchuzov I, Kulichkov S (2019) Internal gravity wave perturbations and their impacts on infrasound propagation in the atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 551–590

    Google Scholar 

  • Cugnet D, de la Camara A, Lott F, Millet C, Ribstein B (2019) Non-orographic gravity waves: representation in climate models and effects on infrasound. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 827--844

    Google Scholar 

  • De Groot-Hedlin C, Hedlin M (2014) Infrasound detection of the Chelyabinsk meteor at the USArray. Earth Planet Sci Lett 402:337–345. https://doi.org/10.1016/j.epsl.2014.01.031

    Article  Google Scholar 

  • De Groot-Hedlin CD, Hedlin MAH (2015) A method for detecting and locating geophysical events using groups of arrays. Geophys J Int 203:960–971. https://doi.org/10.1093/gji/ggv345

    Article  Google Scholar 

  • De Groot-Hedlin CD (2017) Infrasound propagation in tropospheric ducts and acoustic shadow zones. J Acoust Soc Am 142:1816. https://doi.org/10.1121/1.5005889

    Article  Google Scholar 

  • de Groot-Hedlin C, Hedlin M (2019) Detection of infrasound signals and sources using a dense seismic network. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 669–699

    Google Scholar 

  • Drob DP, Picone JM, Garcés M (2003) Global morphology of infrasound propagation. J Geophys Res 108:4680. https://doi.org/10.1029/2002JD003307

    Article  Google Scholar 

  • Drob DP et al (2008) An empirical model of the Earth’s horizontal wind fields: HWM07. J Geophys Res 113. https://doi.org/10.1029/2008ja013668

    Article  Google Scholar 

  • Drob DP, Broutman D, Hedlin MA, Winslow NW, Gibson RG (2013) A method for specifying atmospheric gravity wavefields for long-range infrasound propagation calculations. J Geophys Res Atmos 118:3933–3943. https://doi.org/10.1029/2012JD018077

    Article  Google Scholar 

  • Edwards WN, de Groot-Hedlin CD, Hedlin MAH (2014) Forensic investigation of a probable meteor sighting using USArray acoustic data. Seism Res Lett 85:1012–1018. https://doi.org/10.1785/0220140056

    Article  Google Scholar 

  • Evers LG, Haak HW (2007) Infrasonic forerunners: exceptionally fast acoustic phases. Geophys Res Lett 34:L10806. https://doi.org/10.1029/2007GL029353

    Article  Google Scholar 

  • Fee D et al (2013) Overview of the 2009 and 2011 Sayarim Infrasound calibration experiments. J Geophys Res Atmos 118:6122–6143. https://doi.org/10.1002/jgrd.50398

    Article  Google Scholar 

  • Gainville O, Blanc-Benon P, Blanc E, Roche R, Millet C, Le Piver F, Despres B, and Piserchia PF (2009) Misty picture: a unique experiment for the interpretation of the infrasound propagation from large explosive sources. In: Le Pichon A, Blanc E, Hauchecorne A (ed) infrasound monitoring for atmospheric studies. Springer, New York, pp 575–598. ISBN 978-1-4020-9508-5

    Google Scholar 

  • Garcés MA, Hansen RA, Lindquist KG (1998) Traveltimes for infrasonic waves propagating in a stratified atmosphere. Geophys J Int 135:255–263

    Article  Google Scholar 

  • Garcés MA (2013) On infrasound standards, part 1: time, frequency, and energy scaling. InfraMatics 2:13–35. https://doi.org/10.4236/inframatics.2013.22002, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=33802

    Article  Google Scholar 

  • Garces M (2019) Explosion source models. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 273–345

    Google Scholar 

  • Gardner CS, Hostetler CA, Franke SJ (1993) Gravity wave models for the horizontal wave number spectra of atmospheric velocity and density fluctuations. J Geophys Res 98(D1):1035–1049. https://doi.org/10.1029/92JD02051

    Article  Google Scholar 

  • Gibbons SJ et al (2015) The European Arctic: a laboratory for seismo-acoustic studies. Seism Soc Am 86:917–928. https://doi.org/10.1785/0220140230

    Article  Google Scholar 

  • Green D, Le Pichon A, Ceranna L, Evers L (2009) Ground truth events: Assessing the capability of infrasound networks using high resolution data analyses. In Le Pichon A, Blanc E, Hauchecorne A (ed) Infrasound monitoring for atmospheric studies. Springer, New York, pp 599–625. ISBN 978-1-4020-9508-5

    Google Scholar 

  • Green D, Vergoz J, Gibson R, Le Pichon A, Ceranna L (2011) Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths. J Int, Geophys. https://doi.org/10.1111/j.1365-246X.2011.04975.x

    Book  Google Scholar 

  • Kim K, Rodgers A (2016) Waveform inversion of acoustic waves for explosion yield estimation. Geophys Res Lett 43:6883–6890

    Article  Google Scholar 

  • Kinney G, Graham K (1985) Explosive Shocks in Air, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Kulichkov SN (2009) On the prospects for acoustic sounding of the fine structure of the middle atmosphere. In Le Pichon A, Blanc E, Hauchecorne A (ed) Infrasound Monitoring for atmospheric studies. Springer, New York, pp 511–540. ISBN 978-1-4020-9508-5

    Google Scholar 

  • Kulichkov SN, Chunchuzov IP, Popov OI (2010) Simulating the influence of an atmospheric fine inhomogeneous structure on long-range propagation of pulsed acoustic signals. Izv Russ Acad Sci Atmos Ocean Phys Engl Trans 46(1):60–68. https://doi.org/10.1134/s0001433810010093

    Article  Google Scholar 

  • Le Pichon A, Blanc E, Drob D (2005) Probing high-altitude winds using infrasound. J Geophys Res 110:D20104. https://doi.org/10.1029/2005JD006020

    Article  Google Scholar 

  • Le Pichon A, Ceranna L, Vergoz J (2012), Incorporating numerical modelling into estimates of the detection capability of the IMS infrasound network. J Geophys Res. https://doi.org/10.1029/2011jd0166702009

  • Le Pichon A, Ceranna L, Pilger C, Mialle P, Brown D, Herry P, Brachet N (2013) The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys Res Lett 40:3732–3737. https://doi.org/10.1002/grl.50619

    Article  Google Scholar 

  • Le Pichon A et al (2015) Comparison of co-located independent ground-based middle-atmospheric wind and temperature measurements with Numerical Weather Prediction models. J Geophys Res Atmos 120. https://doi.org/10.1002/2015jd023273

    Google Scholar 

  • Lighthill MJ (1963) Jet Noise. AIAA J 1(7):1507–1517. https://doi.org/10.2514/3.1848

    Article  Google Scholar 

  • Marty J (2019) The IMS infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62

    Google Scholar 

  • Merchant BJ (2015) Hyperion 5113/GP infrasound sensor evaluation. Sandia Report SAND2015–7075, Sandia National Laboratories

    Google Scholar 

  • Mialle P, Brown D, Arora N, colleagues from IDC (2019) Advances in operational processing at the international data centre. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 209–248

    Google Scholar 

  • Millet C, Robinet J-C, Roblin C (2007) On using computational aeroacoustics for long-range propagation of infrasounds in realistic atmospheres. Geophys Res Lett 34:L14814. https://doi.org/10.1029/2007GL029449

    Article  Google Scholar 

  • NASA (2015) Independent Review Team. Orb–3 Accident Investigation Report Executive Summary, Oct 9. https://www.nasa.gov/sites/default/files/atoms/files/orb3_irt_execsumm_0.pdf

  • Nippress A, Green DN, Marcillo OE, and Arrowsmith SJ (2014) Generating regional infrasound celerity-range models using ground-truth information and the implications for event location. Geophys J Int 197(2):1154–1165. https://doi.org/10.1029/2007GL029449

  • Picone JM et al (2002) NRL-MSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107. https://doi.org/10.1093/gji/ggu049

    Article  Google Scholar 

  • Pierce AD, Posey JW, Moo CA (1973) Generation and propagation of infrasonic waves, Air Force Cambridge Research Laboratories, Massachusetts Institute of Technology, Report AD-766472, 131 p

    Google Scholar 

  • Pulli JJ, Kofford A (2015) Infrasound analysis of the October 28, 2014, Antares rocket failure at Wallops Island, Virginia, using video recordings as ground truth. J Acoust Soc Am 137. https://doi.org/10.1121/1.4920619

    Article  Google Scholar 

  • Raspet R, Abbott J-P, Webster J, Yu J, Talmadge C, Alberts II K, Collier S, Noble J (2019) New systems for wind noise reduction for infrasonic measurements. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 91–124

    Google Scholar 

  • Reed JW (1977) Atmospheric attenuation of explosion waves. J Acoust Soc Am 61:39–47

    Article  Google Scholar 

  • Sabatini R, Marsden O, Bailly C, Bogey C (2016) A numerical study of nonlinear infrasound propagation in a windy atmosphere. J Acoust Soc Am 140. https://doi.org/10.1121/1.4958998

    Article  Google Scholar 

  • Smart E, Flinn EA (1971) Fast frequency-Wavenumber analysis and Fisher signal detection in real time infrasonic array data processing. Geophys J Roy Astr Soc 26:279–284

    Article  Google Scholar 

  • Sutherland LC, Bass HE (2004) Atmospheric absorption in the atmosphere up to 160 km. J Acoust Soc Am 115(3):1012–1032, https://doi.org/10.1121/1.1631937

    Article  Google Scholar 

  • Talmadge C, Waxler R, Di X, Gilbert K, Kulichkov S (2008) Observation of low-frequency acoustic surface waves in the nocturnal boundary layer. J Acoust Soc Am 124. https://doi.org/10.1121/1.2967474

    Article  Google Scholar 

  • Varnier J (2001) Experimental study and simulation of rocket engine free jet noise. AIAA J 39(10):1851–1859. https://doi.org/10.2514/2.1199

    Article  Google Scholar 

  • Virieux J, Garnier N, Blanc E, Dessa J-X (2004) Paraxial ray tracing for atmospheric wave propagation. Geophys Res Lett 31:L20106. https://doi.org/10.1029/2004GL020514

    Article  Google Scholar 

  • Walker KT, Hedlin M (2009) A review of wind-noise reduction methodologies. In: Le Pichon A, Blanc E, Hauchecorne A (eds) infrasound monitoring for atmospheric studies. Springer, New York, pp 141–182. ISBN 978-1-4020-9508-5

    Google Scholar 

  • Walker KT, Shelby R, Hedlin MAH, deGroot-Hedlin C, Vernon F (2011) Western U.S. Infrasonic Catalog: Illuminating infrasonic hot spots with the USArray. J Geophys Res 116:B12305. https://doi.org/10.1029/2011jb008579

  • Waxler R, Evers L, Assink J, Blom P (2015) The stratospheric arrival pair in infrasound propagation. J Acoust Soc Am 137:4. https://doi.org/10.1121/1.4916718

    Article  Google Scholar 

  • Waxler R (2003) Modal expansions for sound propagation in the nocturnal boundary layer. J Acoust Soc Am 115. https://doi.org/10.1121/1.1646137

    Article  Google Scholar 

  • Waxler R, Assink J (2019) Propagation modeling through realistic atmosphere and benchmarking. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 509–549

    Google Scholar 

  • Whitaker RW, Sandoval TD, Mutschlecner JP (2003) Recent infrasound analysis. In: Proceedings of the 25th annual seismic research symposium in Tucson, AZ, pp 646–654

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Vergoz .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 9.1.

Table 9.1 Exhaustive list of measured phases and information relative to the location obtained from ray tracing propagation tables. From left to right: station name, phase name, range, arrival time, back azimuth (only for I51 GB), peak-to-peak amplitude in relevant frequency band, celerity model, and azimuthal deviation obtained from ray tracing (only for I51 GB), time residual, back azimuth residual, and final celerity obtained after location. The color of each line represents arrival type: red is tropospheric, green is stratospheric, blue is thermospheric, and orange indicates that the phase has not been used for location because it was not modeled

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vergoz, J., Le Pichon, A., Millet, C. (2019). The Antares Explosion Observed by the USArray: An Unprecedented Collection of Infrasound Phases Recorded from the Same Event. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_9

Download citation

Publish with us

Policies and ethics