Skip to main content

Geoacoustic Observations on Drifting Balloon-Borne Sensors

  • Chapter
  • First Online:

Abstract

Infrasound microphones on free flying balloons experience very little wind noise, can cross regions that lack ground station coverage, and may capture signals that seldom reach the Earth’s surface. Despite the promise of this technique, until recently very few studies had been performed on balloon-borne acoustic sensors. We summarize the history of free flying infrasound stations from the late 1940s to 2014 and report on results from a series of studies spanning 2014–2016. These include the first efforts to record infrasound in the stratosphere in half a century, the presence of a persistent ocean microbarom peak that is not always visible on the ground, and the detection of distant ground explosions. We discuss the unique operational aspects of deploying infrasound sensors on free flying balloons, the types of signals detected at altitude, and the changes to sensor response with height. Finally, we outline the applications of free flying infrasound sensing systems, including treaty verification, bolide detection, upper atmosphere monitoring, and seismoacoustic exploration of the planet Venus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ames Research Staff (1953) Equations, tables, and charts for compressible flow. Technical report, National advisory committee for aeronautics. Report 1135

    Google Scholar 

  • Anderson JF, Johnson JB, Arechiga R, Thomas R (2014) Mapping thunder sources by inverting acoustic and electromagnetic observations. J Geophys Res Atmos 119:13287–13304

    Article  Google Scholar 

  • Anderson JF., Johnson JB, Bowman DC, Ronan TJ (2018) The Gem infrasound logger and custom-built instrumentation. Seismol Res Lett 89(1):153–164

    Article  Google Scholar 

  • Anderson WJ, Taback I (1991) Oscillation of high altitude balloons. J Aircr 28(9):606–608

    Article  Google Scholar 

  • Ando H, Imamura T, Tsuda T, Tellman S, Pätzold M, Häusler B (2015) Vertical wavenumber specra of gravity waves in the Venus atmospher obtained from Venus express radio occultation data: evidence for saturation. J Atmos Sci 72:2318–2329

    Article  Google Scholar 

  • Balachandran NK (1983) Acoustic and electric signals from lightning. J Geophys Res 88(C6):3879–3884

    Article  Google Scholar 

  • Banister JR, Hereford WV (1991) Observed high-altitude pressure waves from an underground and a surface explosion. J Geophys Res 96(D3):5185–5193

    Article  Google Scholar 

  • Barat C, Cot C, Sidi C (1984) On the measurement of the turbulence dissipation rate from rising balloons. J Atmos Ocean Technol 1:270–275

    Article  Google Scholar 

  • Barr R, Llanwyn Jones D, Rodger CJ (2000) ELF and VLF radio waves. J Atmos Solar-Terr Phys 62:1689–1718

    Article  Google Scholar 

  • Barthol P, Gandorfer A, Solanki SK, Schüssler M, Chares B, Curdt W, Deutsch W, Feller A, Germerott D, Grauf B, Heerlein K, Hirzberger J, Kolleck M, Meller R, Muller R, Riethmüller TL, Tomasch G, Knölker M, Lites BW, Card G, Elmore D, Fox J, Lecinski, A, Nelson P, Summers R, Watt A, Martıinez Pillet V, Bonet JA, Schmidt W, Berfkefeld T, Title AM, Domingo V, Gasent Blesa JL, del Toro Iniesta JC, López Jiménez A, Álvarez Herrero A, Sabau-Graziati L, Widani C, Haberler P, Härtel K, Kampf D, Levin T, P’erez Grande I, Sanz-Andrés A, Schmidt E (2011) The sunrise mission. Solar Phys 268:1–34

    Google Scholar 

  • Beech M (1998) Venus-intercepting meteoroid streams. Mon Not R Astron Soc 294:259–264

    Article  Google Scholar 

  • Blamont J (1985) The exploration of the atmosphere of Venus by balloons. Adv Space Res 5(9):99–106

    Article  Google Scholar 

  • Bowman DC (2016) Infrasound from ground to space. PhD thesis, The University of North Carolina at Chapel Hill

    Google Scholar 

  • Bowman DC, Lees JM (2015a) Infrasound in the middle stratosphere measured with a free flying acoustic array. Geophys Res Lett 42(22):10010–10017

    Article  Google Scholar 

  • Bowman DC, Lees JM (2015b) Near real time weather and ocean model data access with rNOMADS. Comput Geosci 78:88–95

    Article  Google Scholar 

  • Bowman DC, Lees JM (2016) Direct measurement of the acoustic wave field in the stratosphere. In: Proceedings of the 2016 IEEE aerospace conference

    Google Scholar 

  • Bowman DC, Norman PE, Yang X (2015) Solar balloons: a low cost, multi-hour flight system for the lower stratosphere

    Google Scholar 

  • Bowman JR, Baker GE, Bahavar M (2005) Ambient infrasound noise. Geophys Res Lett 32:L09803

    Article  Google Scholar 

  • Bretherton FP (1969) Lamb waves in a nearly isothermal atmosphere. Q J R Meteorol Soc 95:754–757

    Article  Google Scholar 

  • Brown P, Spalding RE, ReVelle DO, Tagliaferri E, Worden SP (2002a) The flux of small near-Earth objects colliding with the Earth. Nature 420:294–296

    Article  Google Scholar 

  • Brown PG, Whitaker RW, ReVelle DO, Tagliaferri E (2002b) Multi-station infrasonic observations of two large bolides: signal interpretation and implications for monitoring of atmospheric explosions. Geophys Res Lett 29(13):1636

    Article  Google Scholar 

  • Cahyadi, M. N. and Heki, K. (2015). Coseismic ionospheric disturbance of the large strike-slip earthquakes in North Sumatra in 2012: \(m_{w}\) dependence of the disturbance amplitudes. Geophys J Int 200:116–129

    Google Scholar 

  • Campus P, Christie DR (2010) Worldwide observations of infrasonic waves. In Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer Science and Business Media, pp 185–234

    Google Scholar 

  • Ceranna L, Matoza R, Hupe P, Le Pichon A, Landés M (2019) Systematic array processing of a decade of global IMS infrasound data. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 471–482

    Google Scholar 

  • Christie DR, Campus P (2010) The IMS infrasound network: Design and establishment of infrasound stations. In Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, Springer Science and Business Media, pp 29–75

    Google Scholar 

  • Chum J, Hruska F, Zednik J, Lastovicka J (2012) Ionospheric disturbances (infrasound waves) over the Czech Republic excited by the 2011 Tohoku earthquake. J Geophys Res 117:A08319

    Google Scholar 

  • Coffman JW (1965) A balloon-borne microphone system. In: Korn AO (ed) Proceedings of the 1964 Air Force Cambridge research laboratories scientific balloon symposium, L. G. Hanscom Field, Bedford, Massachusetts

    Google Scholar 

  • Davies K, Jones JE (1973) Acoustic waves in the ionospheric F2 region produced by severe thunderstorms. J Atmos Terr Phys 35:1744–1787

    Article  Google Scholar 

  • Dawton DI, Elliot H (1953) Day and night measurements of the total cosmic ray intensity at balloon altitudes. J Atmos Terr Phys 3:217–222

    Article  Google Scholar 

  • de Groot-Hedlin C, Hedlin MA (2015) A method for detecting and locating geophysical events using groups of arrays. Geophys J Int 203:960–971

    Google Scholar 

  • de Jong M (2015) Venus altitude cycling balloon. In: Venus lab and technology workshop

    Google Scholar 

  • Doerenbecher A, Basdevant C, Drobinski P, Durand P, Fesquet C, Bernard F, Cocquerez P, Verdier N, Vargas A (2016) Low atmosphere drifting balloons: platforms for environmental monitoring and forecast improvement. Bull Am Meteorol Soc

    Google Scholar 

  • Drobzheva YV, Krasnov VM (2003) The acoustic field in the atmosphere and ionosphere caused by a point explosion on the ground. J Atmos Solar-Terr Phys 65:369–377

    Article  Google Scholar 

  • Edwards WN, Brown PG, ReVelle DO (2006) Estimates of meteoroid kinetic energies from observations of infrasonic airwaves. J Atmos Solar-Terr Phys 68:1136–1160

    Article  Google Scholar 

  • Farges T, Blanc E (2010) Characteristics of infrasound from lightning and sprites near thunderstorm areas. J Geophys Res Space Phys 115:A00E31

    Article  Google Scholar 

  • Fee D, Haney M, Matoza R, Szuberla C, Lyons J, Waythomas C (2016) Seismic envelope-based detection and location of ground-coupled airwaves from volcanoes in Alaska. Bulletin of the Seismol Soc Am 106(3):1024–1035

    Article  Google Scholar 

  • Fee D, Matoza RS (2013) An overview of volcano infrasound: from hawaiian to plinian, local to global. J Volcanol Geoth Res 249:123–139

    Article  Google Scholar 

  • Frankel C (1996) Volcanoes of the solar system. Cambridge University Press

    Google Scholar 

  • Fukuhara T, Futaguchi M, Hashimoto GL, Horinouchi T, Imamura T, Iwagaimi N, Koyama T, Murakami S, Nakamura M, Ogohara K, Sato M, Suzuki M, Taguchi M, Takagi S, Ueno M, Watanabe S, Yamada M, Yamazaki A (2017) Large stationary gravity wave in the atmosphere of Venus. Nat Geosci

    Google Scholar 

  • Garcia RF, Mimoun D, Brissaud Q, Poler G, Lebonnois S (2016). Infrasound from Venus quakes: numerical modeling and balloon observation project. In: International Venus conference

    Google Scholar 

  • Green DN, Bowers D (2010) Estimating the detection capability of the international monitoring system infrasound network. J Geophys Res 115:D18116

    Article  Google Scholar 

  • Guzik TG, Besse S, Calongne A, Dominique A, Ellison SB, Gould R, Granger D, Olano D, Smith D, Stewart M, Wefel JP (2008) Development of the High Altitude Student Platform. Adv Sp Res 42:1704–1714

    Article  Google Scholar 

  • Haack A, Gerding M, Lübken F-J (2014) Characteristics of stratospheric turbulent layers measured by LITOS and their relation to the Richardson number. J Geophys Res Atmos 119:10605–10618

    Article  Google Scholar 

  • Herrin ET, Kim TS, Stump B (2006) Evidence for an infrasound waveguide. Geophys Res Lett 33:L07815

    Article  Google Scholar 

  • Hickey MP, Schubert G, Walterscheid RL (2001) Acoustic wave heating of the thermosphere. J Geophys Res Sp Phys 106(A10):21543–21548

    Article  Google Scholar 

  • Jet propulsion laboratory (2016) Fireball and bolide reports

    Google Scholar 

  • Jones JS (1995) Reversible fluid balloon altitude control concepts. In: Proceedings of the 11th lighter-than-air systems technology conference

    Google Scholar 

  • Krasnov VM, Drobzheva YV, Chum J (2015) Far-field coseismic ionospheric disturbances of Tohoku earthquake. J Atmos Solar-Terr Phys 135:12–21

    Article  Google Scholar 

  • Krasnov VM, Drobzheva YV, Lastovicka J (2007) Acoustic energy transfer to the upper atmosphere from sinusoidal sources and a role of nonlinear processes. J Atmos Solar-Terr Phys 69:1357–1365

    Article  Google Scholar 

  • Lally VE (1967) Superpressure balloons for horizontal soundings of the atmosphere. Technical report, National Center for Atmospheric Research

    Google Scholar 

  • Lally VE (1991) Manned orbital balloon flight—available techniques. In:International balloon technology conference

    Google Scholar 

  • Landès M, Ceranna L, Le Pichon A, Matoza RS (2012) Localization of microbarom sources using the IMS infrasound network. J Geophys Res 117:D06102

    Article  Google Scholar 

  • Le Pichon A, Ceranna L, Pilger C, Mialle P, Brown D, Herry P, Brachet N (2013) The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys Res Lett 40:3732–3737

    Article  Google Scholar 

  • Le Pichon A, Ceranna L, Vergoz J (2012) Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J Geophys Res 117:D05121

    Article  Google Scholar 

  • Le Pichon A, Herry P, Mialle P, Vergoz J, Brachet N, Garcés M, Drob D, Ceranna L (2005) Infrasound associated with the 2004–2005 large Sumatra earthquake and tsunami. Geophys Res Lett 32:L19802

    Article  Google Scholar 

  • Lighthill J (1978) Waves in fluids. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Lognonné P, Banerdt WB, Hurst K, Mimoun D, Garcia R, Lefeuvre M, Gagnepain-Beyneix J, Wieczorek M, Mocquet A, Panning M, Beucler E, Deraucourt S, Giardini D, Boschi L, Christensen U, Goetz W, Pike T, Johnson C, Weber R, Larmat K, Kobayashi N, Tromp J (2012). InSight and single-station broadband seismology: From signal and noise to interior structure determination. In: 43rd lunar and planetary conference

    Google Scholar 

  • Mabie J, Bullett T, Moore P, Vieira G (2016) Identification of rocket-induced acoustic waves in the ionosphere. Geophys Res Lett

    Google Scholar 

  • Marcillo O, Johnson JB, Hart D (2012) Implementation, characterization, and evaluation of an inexpensive low-power low-noise infrasound sensor based on a micromachined differential pressure transducer and a mechanical filter. J Atmos Ocean Technol 29:1275–1284

    Article  Google Scholar 

  • Marcq E, Bertaux J-L, Montmessin F, Belyaev D (2013) Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere. Nat Geosci 6:25–28

    Article  Google Scholar 

  • Marty J (2019) The IMS infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62

    Google Scholar 

  • Matoza RS, Green DN, Le Pichon A, Shearer PM, Fee D, Mialle P, Ceranna L (2017) Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network. J Geophys Res Sol Earth 122:2946–2971

    Google Scholar 

  • Matoza RS, Landés M, Le Pichon A, Ceranna L, Brown D (2013) Coherent ambient infrasound recorded by the International Monitoring System. Geophys Res Lett 40:429–433

    Article  Google Scholar 

  • Meecham WC, and Wescott, J. W. (1965). High-altitude noise background. In: Proceedings of the 5th international congress on acoustics

    Google Scholar 

  • Mentik JH, Evers LG (2011) Frequency response and design parameters for differential microbarometers. J Acoust Soc Am 130(1):33–41

    Article  Google Scholar 

  • Morris AL (ed) (1975) Scientific ballooning handbook. National Center for Atmospheric Research. NCAR-TN/1A-99

    Google Scholar 

  • Mutschlecner JP, Whitaker RW (1997) The design and operation of infrasonic microphones. Technical report, Los Alamos National Laboratories

    Book  Google Scholar 

  • Naka Y, Shindo S, Makino Y, Kawakami H (2013) Systems and methods for aerial and ground-based sonic boom measurement. Technical report, Japan Aerospace Exploration Agency

    Google Scholar 

  • Negraru PT, Golden P, Herrin ET (2010) Infrasound propagation in the “Zone of Silence”. Seismo Res Lett 81(4):615–625

    Article  Google Scholar 

  • Negraru PT, Herrin ET (2009) On infrasound waveguides and dispersion. Seismo Res Lett 80(4):565–571

    Article  Google Scholar 

  • NOAA (1976) U.S. standard atmosphere 1976. Technical report, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, and the United States Air Force

    Google Scholar 

  • Officer CB (1958) Introduction to the theory of sound transmission. McGraw Hill Book Company

    Google Scholar 

  • Peebles C (1997) High frontier: The U. government printing office, S. Air Force and the Military Space Program. The U. S. Government Printing Office, U. S

    Google Scholar 

  • Pilger C, Bittner M (2009) Infrasound from tropospheric sources: impact on mesopause temperature? J Atmos Solar-Terr Phys 71:816–822

    Article  Google Scholar 

  • Quinn EP, Holzworth RH (1987) Quasi-lagrangian measurements of density surface fluctuations and power spectra in the stratosphere. J Geophys Res 92(D9):10926–10932

    Article  Google Scholar 

  • Raspet R, Abbott J-P, Webster J, Yu J, Talmadge C, Alberts II K, Collier S, Noble J (2019) New systems for wind noise reduction for infrasonic measurements. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 91–124

    Google Scholar 

  • Rayleigh (1894) The theory of sound, vol 2. Macmillan and Co

    Google Scholar 

  • Rind D (1977) Heating of the lower thermosphere by the dissipation of acoustic waves. J Atmos Terr Phys 39:445–456

    Article  Google Scholar 

  • Rind D (1978) Investigation of the lower thermosphere results of ten years of continuous observations with natural infrasound. J Atmos Terr Phys 40:1199–1209

    Article  Google Scholar 

  • Russell CT, Zhang TL, Delva M, Magnes W, Strangeway RJ, Wei HY (2007) Lightning on Venus inferred from whistler-mode waves in the ionosphere. Nature 450:661–662

    Article  Google Scholar 

  • Sagdeev RS, Linkin VM, Blamont JT, Preston RA (1986) The VEGA Venus balloon experiment. Science 231(4744):1407–1408

    Article  Google Scholar 

  • Saito, Y. (2014). Quest for altitude. Accessed 2 Dec 2016

    Google Scholar 

  • Shalygin EV, Markiewicz WJ, Basilevsky AT, Titov DV, Ignatiev NI, Head JW (2015) Active volcanism on Venus in the Ganiki Chasma rift zone. Geophys Res Lett 42:4762–4769

    Article  Google Scholar 

  • Smrekar SE, Stofan ER, Mueller N, Treiman A, Elkins-Tanton L, Helbert J, Piccioni G, Drossart P (2010) Recent hot-spot volcanism on Venus from VIRTIS emissivity data. Science 328:605–608

    Article  Google Scholar 

  • Squyres S (2011) Vision and voyages for planetary science in the decade 2013–2022

    Google Scholar 

  • Stevenson D, Cutts J, Mimoun D (2015) Probing the interior structure of Venus. Technical report, Keck Institute for Space Studies

    Google Scholar 

  • Tailpied D, Le Pichon A, Marchetti E, Assink J, Vergniolle S (2016) Assessing and optimizing the performance of infrasound networks to monitor volcanic eruptions. Geophys J Int

    Google Scholar 

  • Veggeberg K (2012) Development of a sonic boom measurement system at JAXA. In: Proceedings of the acoustics 2012 Nantes conference

    Google Scholar 

  • Volcano World (2017) Volcano world: Venus. Accessed 4 Jan 2017

    Google Scholar 

  • Walker KT, Hedlin MA (2010) A review of wind-noise reduction technologies. In: Infrasound monitoring for atmospheric studies, chapter 5, pp 141–182. Springer Science and Business Media

    Google Scholar 

  • Walterscheid RL, Hickey MP (2005) Acoustic waves generated by gusty flow over hilly terrain. J Geophys Res Sp Phys 110:A10307

    Article  Google Scholar 

  • Waxler R, Gilbert KE (2006) The radiation of atmospheric microbaroms by ocean waves. J Acoust Soc Am 119(5):2651–2664

    Article  Google Scholar 

  • Weaver RL, McAndrew J (1995) The Roswell report: fact versus fiction in the New Mexico desert. Government Printing Office, U.S

    Book  Google Scholar 

  • Wescott JW (1961) Atmospheric background at high altitudes. In: Proceedings of the symposium on atmospheric acoustic propagation

    Google Scholar 

  • Wescott JW (1964a) Acoustic detection of high-altitude turbulence. Technical report, The University of Michigan

    Google Scholar 

  • Wescott JW (1964b) Acoustic detection of high altitude turbulence. In: Korn AO (ed) Proceedings of the 1964 Air Force Cambridge Research Laboratories scientific ballooning symposium, L. G. Hanscom Field, Bedford, Massachusetts

    Google Scholar 

  • Wu Y, Llewellyn Smith SG, Rottman JW, Broutman D, Minister J-BH (2016) The propagation of tsunami-generated acoustic-gravity waves in the atmosphere. J Atmos Sci 73:3025–3036

    Article  Google Scholar 

  • Yajima N, Izutsu N, Imamura T, Abe T (2009) Scientific Ballooning: Technology and applications of exploration balloons floating in the stratosphere and the atmospheres of other planets. Springer Science and Business Media

    Google Scholar 

  • Young EF, Brown P, Boslough M, Ballard C, Dougherty E, Dullea C, Garner K, Heaney M, Thom I., Von Hendy, M., Wahl, K., and Young, E. (2016). Detection of infrasound disturbances from the Earth’s stratosphere. In: Proceedings of the 2016 IEEE aerospace conference

    Google Scholar 

  • Zhang SD, Yi F, Huang CM, Huang KM (2012) High vertical resolution analyses of gravity waves and turbulence at a midlatitude station. J Geophys Res Atmos 117:D02103

    Google Scholar 

Download references

Acknowledgements

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or Sandia National Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bowman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bowman, D. et al. (2019). Geoacoustic Observations on Drifting Balloon-Borne Sensors. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_4

Download citation

Publish with us

Policies and ethics