Skip to main content

Large-Scale and Transient Disturbances and Trends: From the Ground to the Ionosphere

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

Infrasonic waves excited at surface or in the troposphere propagate to longer distances via reflections from the middle and upper stratosphere or the lower thermosphere. These two atmospheric regions are affected by large-scale and transient disturbances, by long-term changes and trends. A brief review is given with particular emphasis on the stratosphere and lower thermosphere. The impact of such disturbances and long-term trends on the propagation of infrasonic waves is qualitatively estimated. Two dominant disturbances of solar origin, which substantially affect the atmosphere, and particularly the ionosphere, are solar flares and geomagnetic storms. Atmospheric waves, namely gravity waves, planetary waves, and tidal waves, affect both regions of infrasound reflections. The major midwinter stratospheric warming has pronounced effect on the height profile of temperature, thus they are capable to significantly affect propagation of infrasonic waves. There are also sporadic effects like earthquakes, which excite infrasound and gravity waves, but their overall impact on infrasound propagation is small. The impact of atmospheric waves is smaller than that of some sporadic effects like the major stratospheric warmings but atmospheric waves are continuously present in the atmosphere. Both the stratosphere and thermosphere experience also long-term changes and trends, in recent decades of predominantly anthropogenic origin (greenhouse effect, ozone depletion). These long-term changes are small but continuous, so they do not affect behavior of infrasonic waves on short-term scales but might have some effect on long-term scales like changes from decade to decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers JR, Birner T (2014) Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings. J Atmos Sci 71:4028–4054. https://doi.org/10.1175/JAS-D-14-0026.1

    Article  Google Scholar 

  • Altadill D, Apostolov EM, Boska J, Lastovicka J, Sauli P (2004) Planetary and gravity wave signatures in the F region ionosphere with impact to radio propagation predictions and variability. Annals Geophys 47:1109–1119

    Google Scholar 

  • Andrioli VF, Fritts DC, Batista PP, Clemensha BR, Janches D (2013) Diurnal variation in gravity wave activity at low and middle latitudes. Ann Geophys 31:2123–2135. https://doi.org/10.5194/angeo-31-2123-2013

    Article  Google Scholar 

  • Angot G, Keckhut P, Hauchecorne A, Claud C (2012) Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute-Provence Observatory (44°N). J Geophys Res 117:D21102. https://doi.org/10.1029/2012JD017631

    Article  Google Scholar 

  • Assink J, Smets P, Marcillo O, Weemstra C, Lalande J-M, Waxler R, Evers L (2019) Advances in infrasonic remote sensing methods. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632

    Google Scholar 

  • Astafyeva E, Lognonne P, Rolland L (2011) First ionospheric images of the seismic fault slip on the example of the Tohoku-oki earthquake. Geophys Res Lett 38:L22104. https://doi.org/10.1029/2011GL049623

    Article  Google Scholar 

  • Azeem I, Crowley G, Honniball C (2015) Global ionospheric response to the 2009 sudden stratospheric warming event using ionospheric data assimilation four-dimensional (IDA4D) algorithm. J Geophys Res Space Phys 120:4009–4019. https://doi.org/10.1002/2015JA020993

    Article  Google Scholar 

  • Baker DM, Davies K (1969) F2-region acoustic waves from severe weather. J Atmos Sol-Terr Phys 31:1345–1352

    Article  Google Scholar 

  • Baker DN, Blake JD, Klebesadel WR, Higbie PR (1986) Highly relativistic electrons in the Earth’s outer magnetosphere, 1, lifetimes and temporal history 1979–1984. J Geophys Res 91:4265–4273

    Article  Google Scholar 

  • Beig G (2011) Long-term trends in the temperature of the mesosphere/lower thermosphere region: 1. Anthropogenic influences. J Geophys Res 116:A00H11. https://doi.org/10.1029/2011ja016646

    Google Scholar 

  • Besalpov PA, Savina ON (2015) Exponential and local Lamb waves in the nonisothermal atmosphere as an obstacle to the acoustic-gravity disturbance propagation up to the ionosphere. J Atmos Sol-Ter Phys 123:137–143. https://doi.org/10.1016/j.jastp.2015.01.002

    Article  Google Scholar 

  • Blanc E (1985) Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: a summary. Ann Geophys 3:673–688

    Google Scholar 

  • Blanc E, Pol K, Le Pichon A, Hauchecorne A, Keckhut P, Baumgarten G, Hildebrand J, Höffner J, Stober G, Hibbins R, Espy P, Rapp M, Kaifler B, Ceranna L, Hupe P, Hagen J, Rüfenacht R, Kämpfer N, Smets P (2019) Middle atmosphere variability and model uncertainties as investigated in the framework of the ARISE project. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 845–887

    Google Scholar 

  • Boska J, Sauli P, Altadill D, Sole G, Alberca LF (2003) Diurnal variation of the gravity wave activity at midlatitudes of the ionospheric F region. Stud Geoph Geod 47:579–586

    Article  Google Scholar 

  • Bourassa AE, Degenstein DA, Randel WJ, Zawodny JM, Kyrölä E, McLinden CA, Sioris CE, Roth CZ (2014) Trends in stratospheric ozone derived from merged SAGE II and Odin-ORISIS satellite observations. Atmos Chem Phys 14:6983–6994. http://www.atmos-chem-phys.net/14/6983/2014/

    Article  Google Scholar 

  • Bremer J (2008) Long-term trends in the ionospheric E and F1 regions. Ann Geophys 26:1189–1197

    Article  Google Scholar 

  • Buonsanto MJ (1999) Ionospheric storms—a review. Space Sci Rev 88:563–601. https://doi.org/10.1023/A:1005107532631

    Article  Google Scholar 

  • Butchart N (2014) The Brewer-Dobson circulation. Rev Geophys 52:157–184. https://doi.org/10.1002/2013RG000448

    Article  Google Scholar 

  • Ceranna L, Le Pichon A, Green DN, Mialle P (2009) The Buncefield explosion: a benchmark for infrasound analysis across Central Europe. Geophys J Int 177:491–508. https://doi.org/10.1111/j.1365-246x.2008.03998.x

    Article  Google Scholar 

  • Chernogor LF (2015) Ionospheric effects oif the Chelyabinsk meteoroid. Geomagn Aeron 55:353–368

    Article  Google Scholar 

  • Chum J, Athieno R, Baše J, Burešová D, Hruška F, Laštovička J, McKinnell LA, Šindelářová T (2012a) Statistical investigation of horizontal propagation of gravity waves in the ionosphere over Europe and South Africa. J Geophys Res Space Phys 117. https://doi.org/10.1029/2011ja017161

    Article  Google Scholar 

  • Chum J, Hruska F, Zednik J, Lastovicka J (2012b) Ionospheric disturbances (infrasound waves) over the Czech Republic excited by the 2011 Tohoku earthquake. J Geophys Res 117:A08319. https://doi.org/10.1029/2012JA017767

    Article  Google Scholar 

  • Ern M, Ploeger F, Preusse P, Gille JC, Gray LJ, Kalisch S, Mlynczak MG, Russell JM, Riese M (2014) Interaction of gravity waves with QBO: a satellite perspective. J Geophys Res Atmos 119:2329–2355. https://doi.org/10.1002/2013JD020731

    Article  Google Scholar 

  • Farges T, Coulouvrat F, Gallin LJ, Marchiano R (2019) Infrasound for detection, localization, and geometrical reconstruction of lightning flashes. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 911–938

    Google Scholar 

  • Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1003. https://doi.org/10.1029/2001RG000106

    Article  Google Scholar 

  • Fritts DC, Vadas SL, Wan K, Werne JA (2006) Mean and variable forcing of the middle atmosphere by gravity waves. J Atmos Sol-Terr Phys 68:247–265. https://doi.org/10.1016/j.jastp.2005.04.010

    Article  Google Scholar 

  • Galvan DA, Komjathy A, Hickey MP, Stephens P, Snively J, Song YT, Butala MD, Mannucci AJ (2012) Ionospheric signatures of Tohoku-Oki tsunami of March 11, 2011: model comparisons near the epicenter. Radio Sci 47:RS4003. https://doi.org/10.1029/2012rs.005023

  • Georges TM (1967) ESSA Technical report IER 57-ITSA 54. Ionospheric effects of atmospheric waves. Institute for Telecomunication Sciences and Aeronomy, Boulder, 341 pp

    Google Scholar 

  • Georges TM (1973) Infrasound from convective storms: examining the evidence. Rev Geophys Space Phys 11:571–594

    Article  Google Scholar 

  • Hao YQ, Xiao Z, Zhang DH (2012) Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake. J Geophys Res 117:A02305. https://doi.org/10.1029/2011JA017036

    Article  Google Scholar 

  • Hao YQ, Xiao Z, Zhang DH (2013) Teleseismic magnetic effects (TMDs) of 2011 Tohoku earthquake. J Geophys Res Space Phys 118:3914–3923. https://doi.org/10.1002/jgra.50326

    Article  Google Scholar 

  • Harris NRP et al (2008) Ozone trends at northern mid- and high latitudes—a European perspective. Ann Geophys 26:1207–1220. https://doi.org/10.5194/angeo-26-1207-2008

    Article  Google Scholar 

  • Hegglin M, Plummer DA, Shepherd TG, Scinocca JF, Anderson J, Froidevaux L, Funke B, Hurst D, Rozanov A, Urban J, von Clarman T, Walker KA, Wang HJ, Tegtmeier S, Weigel K (2014) Vertical structure of stratospheric water vapour trends derived from merged satellite data. Nat Geosci 7:768–776

    Article  Google Scholar 

  • Hickey MP, Schubert G, Walterscheid RL (2001) Acoustic wave heating of the thermosphere. J Geophys Res Space Phys 106(A10):21453–21548

    Article  Google Scholar 

  • Hoffmann L, Xue X, Alexander MJ (2013) A global view of stratospheric gravity wvae hotspots located with Atmospheric Infrared Sounder observations. J Geophys Res Atmos 118:416–434. https://doi.org/10.1029/2012JD018658

    Article  Google Scholar 

  • Hood L, Rossi S, Beulen M (1999) Trends in lower stratospheric zonal winds, Rossby wave breaking behavior, and column ozone at northern midlatitudes. J Geophys Res Atmos 104(D20):24321–24339

    Article  Google Scholar 

  • Huang FT, Mayr HG, Russell III JM, Mlynczak MG (2014) Ozone and temperature decadal trends in the stratosphere, mesosphere and lower thermosphere, based on measurements from SABER on TIMED. Ann Geophys 32:935–949. www.ann-geophys.net/32/935/2014/

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) In: Solomon S et al (eds) Climate change 2007: the physical science basis. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2013) In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Jadin EA (1997) Diagnosis of long-term changes in stratospheric dynamics. Izv FIZ Atmos Ocean 33:787–794

    Google Scholar 

  • Jiang Q, Doyle JD, Reinecke A, Smith RB, Eckermann SD (2013) A modeling study of stratospheric waves over the Southern Andes and Drake Passage. J Atmos Sci 70:1668–1689. https://doi.org/10.1175/JAS-D-12-0180.1

    Article  Google Scholar 

  • Kishore P, Venkat Ratnam M, Velicogna I, Sivakumar V, Bencherif H, Clemesha BR, Simonich DM, Batista PP, Beig G (2014) Long-term trends observed in the middle atmosphere temperatures using ground based LIDARs and satellite borne measurements. Ann Geophys 32:301–317. www.ann-geophys.net/32/301/2014/

    Article  Google Scholar 

  • Kozubek M, Križan P, Laštovička J (2015) Northern hemisphere stratospheric winds in higher midlatitudes: longitudinal distribution and long-term trends. Atmos Chem Phys 15:2203–2213. http://www.atmos-chem-phys.net/15/2203/2015/

    Article  Google Scholar 

  • Krasnov VM, Drobzheva Ya V, Laštovička J (2006) Recent advances and difficulties of infrasonic wave investigation in the ionosphere. Surv Geophys 27:169–209

    Article  Google Scholar 

  • Krasnov VM, Drobzheva Ya V, Venart JES, Laštovička J (2003) A re-analysis of the atmospheric and ionospheric effects of the Flixborough explosion. J Atmos Sol-Terr Phys 65:1205–1212

    Article  Google Scholar 

  • Laine M, Latva-Pukkila N, Kyrölä E (2014) Analysing time-varying trends in stratospheric ozone time series using the state space approach. Atmos Chem Phys 14:9707–9725. http://www.atmos-chem-phys.net/14/9707/2014/

    Article  Google Scholar 

  • Laštovička J (1996) Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere. J Atmos Terr Phys 58:831–843

    Article  Google Scholar 

  • Laštovička J (2006) Forcing of the ionosphere by waves from below. J Atmos Sol-Terr Phys 68:479–497. https://doi.org/10.1016/j.jastp.2005.01.018

    Article  Google Scholar 

  • Laštovička J (2009) Lower ionosphere response to external forcing. Adv Space Res 43:1–14

    Article  Google Scholar 

  • Laštovička J (2013) Trends in the upper atmosphere and ionosphere: recent progress. J Geophys Res Space Phys 118:3924–3935. https://doi.org/10.1002/jgra.50341

    Article  Google Scholar 

  • Laštovička J, Akmaev RA, Beig G, Bremer J, Emmert JT, Jacobi C, Jarvis MJ, Nedoluha G, Portnyagin YI, Ulich T (2008) Emerging pattern of global change in the upper atmosphere and ionosphere. Ann Geophys 26:1255–1268. www.ann-geophys.net/26/1255/2008/

    Article  Google Scholar 

  • Laštovička J, Baše J, Hruška F, Chum J, Šindelářová T, Horálek J, Zedník J, Krasnov V (2010) Simultaneous infrasonic, seismic, magnetic and ionospheric observations in an earthquake epicenter. J Atmos Sol-Terr Phys 72:1231–1240. https://doi.org/10.1016/j.jastp.2010.08.005

    Article  Google Scholar 

  • Laštovička J, Šauli P, Križan P, Novotná D (2003) Persistence of the planetary wave type oscillations in foF2 over Europe. Ann Geophys 21:1543–1552

    Article  Google Scholar 

  • Laštovička J, Solomon SC, Qian L (2012) Trends in the neutral and ionized upper atmosphere. Space Sci Rev 168:113–145. https://doi.org/10.1007/s11214-011-9799-3

    Article  Google Scholar 

  • Li T, Leblanc T, McDermid IS, Keckhut P, Hauchecorne A, Dou XK (2011) Middle atmosphere temperature trend and solar cycle revealed by long-term Rayleigh lidar observations. J Geophys Res Atmos 116:D00P05. https://doi.org/10.1029/2010jd01527

  • Makela JJ, Lognonne P, Hebert H, Gehrels T, Rolland L, Aligeyer S, Kherani A, Occhipinti G, Astafyeva E, Coisson P, Loevenbruck A, Clevede E, Kelley MC, Lamouroux J (2011) Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generate dby the Tohoku earthquake of 11 March 2011. Geophys Res Lett 38:L00G02. https://doi.org/10.1029/2011gl047860

    Article  Google Scholar 

  • Marchetti E, Ripepe M, Campus P, Le Pichon A, Brachet N, Blanc E, Gaillard P, Mialle P, Husson P (2019) Infrasound monitoring of volcanic eruptions and contribution of ARISE to the volcanic ash advisory centers. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1141–1162

    Google Scholar 

  • Meriwether JW, Mirick JL, Biondi MA, Herraro FA, Fesen CG (1996) Evidence for orographic wave heating in the equatorial thermosphere at solar maximum. Geophys Res Lett 23:2177–2180

    Article  Google Scholar 

  • Meriwether JW, Biondi MA, Herraro FA, Fesen CG, Hallenback DC (1997) Optical interferometric studies of the nighttime equatorial thermosphere; enahanced temperatures and zonal wind gradients. J Geophys Res 102:20041–20058

    Article  Google Scholar 

  • Monier E, Weare BC (2011) Climatology and trends in the forcing of the stratospheric zonal-mean flow. Atmos Chem Phys 11:12751–12771

    Article  Google Scholar 

  • Occhipinti G, Rolland L, Lognonne P, Watada S (2013) From Sumatra 2004 to Tohoko-Oki 2011: the systematic GPS detection of the ionospheric signatures induced by tsunamigenic earthquakes. J Geophys Res Space Phys 118:3626–3636. https://doi.org/10.1002/jgra.50322

    Article  Google Scholar 

  • Osso A, Sola Y, Rosenlof K, Hassler B, Bech J, Lorente J (2015) How robust are trends in the Brewer-Dobson circulation derived from observed stratospheric temperatures? J Clim 28:3024–3039. https://doi.org/10.1175/JCLI-D-14-00295.1

    Article  Google Scholar 

  • Pancheva D (2001) Non-linear interaction of tides and planetary waves in the mesosphere and lower thermosphere: observations over Europe. Phys Chem Earth Part C 26:411–418

    Article  Google Scholar 

  • Pilger C, Schmidt C, Bittner M (2013a) Statistical analysis of infrasound signatures in aiglow observations: indications for acoustic resonance. J Atmos Sol-Terr Phys 93:70–79. https://doi.org/10.1016/j.jastp.2012.11.011

    Article  Google Scholar 

  • Pilger C, Schmidt C, Streicher F, Wust S, Bittner M (2013b) Airglow observations of orographic, volcanic and meteorological infrasound signatures. J Atmos Sol-Terr Phys 104:55–66. https://doi.org/10.1016/j.jastp.2013.08.008

    Article  Google Scholar 

  • Ploeger F, Abalos M, Birner T, Konopka P, Legras B, Muller R, Riese M (2015) Quantifying the effects of mixing and residual circulation on trends of stratospheric mean age of air. Geophys Res Lett 42:2047–2054. https://doi.org/10.1002/2014GL062927

    Article  Google Scholar 

  • Pramitha M, Venkat Ratnam M, Taori A, Krishna Murthy BV, Pallamraju D, Vijaya S, Rao B (2015) Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray tracing technique. Atmos Chem Phys 15:2709–2721. https://doi.org/10.5194/acp-15-2709-2015

    Article  Google Scholar 

  • Prasad SS, Schneck LJ, Davies K (1975) Ionospheric disturbances by severe tropospheric weather storms. J Atmos Terr Phys 37:1357–1363

    Article  Google Scholar 

  • Randel WJ (2010) Variability and trends in stratospheric temperature and water vapor. In: Polvani LM, Sobel AH, Waugh DW (eds) Stratosphere: dynamics, transport and chemistry, geophysical monograph series, vol 190, pp 123–135. https://doi.org/10.1029/2009gm000870

    Chapter  Google Scholar 

  • Remsberg E (2015) Methane as a diagnostic tracer of changes in the Brewer-Dobson circulation of the stratosphere. Atmos Chem Phys 15:3739–3754. http://www.atmos-chem-phys.net/15/3739/2015/

    Article  Google Scholar 

  • Ren RC, Yang Y (2012) Changes in winter stratospheric circulation in CMIP5 scenarios simulated by the climate system model FGOALS-s2. Adv Atmos Sci 29:1374–1389. https://doi.org/10.1007/s00376-012-1184-y

    Article  Google Scholar 

  • Rind D (1977) Heating of lower thermosphere by dissipation of acoustic waves. J Atmos Sol-Terr Phys 39:445–456

    Article  Google Scholar 

  • Šauli P, Boska J (2001) Tropospheric events and possible related gravity wave activity effects on the ionosphere. J Atmos Sol Terr Phys 63:945–950

    Article  Google Scholar 

  • Sentman DD, Wescott EM, Picard RH, Winick JR, Stenbaek-Nielsen HC, Dewan EM, Moudry DR, Sao Sabbas FT, Heavner MJ, Morrill J (2003) Simultaneous observations of mesospheric gravity waves and sprites generated by a Midwestern thunderstorm. J Atmos Sol-Terr Phys 65:537–550. https://doi.org/10.1016/S1364-6826(02)00328-0

    Article  Google Scholar 

  • Simmons AJ, Poli P, Dee DP, Berrisford P, Hersbach H, Kobayashi S, Peubey C (2014) Estimating low-frequency variability and trends in atmospheric temperature using ERA-Interim. Q J R Meteorol Soc 140:329–353. https://doi.org/10.1002/qj.2317

    Article  Google Scholar 

  • Šindelářová T, Buresova D, Chum J, Hruska F (2009) Doppler observations of infrasonic waves of meteorological origin at ionospheric heights. Adv Space Res 43:1644–1651. https://doi.org/10.1016/j.asr.2008.08.022

    Article  Google Scholar 

  • Smets PSM, Evers LG (2014) The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. J Geophys Res Atmos 119:12084–12099. https://doi.org/10.1002/2014JD021905

    Article  Google Scholar 

  • Smets P, Assink J, Evers L (2019) The study of sudden stratospheric warmings using infrasound. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632

    Google Scholar 

  • Solomon SC, Qian L, Roble RG (2015) New 3-D simulations of climate change in the thermosphere. J Geophys Res Space Phys 120:2183–2193. https://doi.org/10.1002/2014JA020886

    Article  Google Scholar 

  • Tsugawa T, Saito A, Otsuka Y, Nishioka M, Maruyama T, Kato H, Nagatsuma T, Murata KT (2012) Concentric waves observed in the ionosphere after the 2011 Tohoku earthquake. CAWSES-II TG4 Newsletter 8:2–4

    Google Scholar 

  • Urban J, Lossow S, Stiller G, Read W (2014) Another drop in water vapor, EOS. Trans AGU 95(27):245–246. https://doi.org/10.1002/2014EO27

    Article  Google Scholar 

  • Vadas SL, Fritts DC (2004) Thermospheric responses to gravity waves arising from mesoscale convective complexes. J Atmos Sol-Ter Phys 66:781–804. https://doi.org/10.1016/j.jastp.2004.01.25

    Article  Google Scholar 

  • Vadas SL, Fritts DC (2005) Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity. J Geophys Res 110:D15103. https://doi.org/10.1029/2004JD005574

    Article  Google Scholar 

  • Vadas SL, Fritts DC (2006) Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection, J Geophys Res 111:A10S12. https://doi.org/10.1029/2005ja011510

  • Vadas SL (2007) Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J Geophys Res 112:A06305. https://doi.org/10.1029/2006JA011845

    Article  Google Scholar 

  • Vadas SL, Nicholls MJ (2012) The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: theory. J Geophys Res 117:A05322. https://doi.org/10.1029/2011JA017426

    Article  Google Scholar 

  • Várai A, Homonnai V, Jánosi IM, Müller R (2015) Early signatures of ozone trend reversal over the Antarctic. Earth’s Future 3:95–109. https://doi.org/10.1002/2014EF000270

    Article  Google Scholar 

  • Walterscheid RL, Hickey MP (2011) Group velocity and energy flux in the thermosphere: limits on the validity of group velocity in a viscous atmosphere. J Geophys Res 116:D12101. https://doi.org/10.1029/2010JD014987

    Article  Google Scholar 

  • Waxler R, Assink J (2019) Propagation modeling through realistic atmosphere and benchmarking. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 509–549

    Google Scholar 

  • Yeh KC, Liu CH (1974) Acoustic-gravity waves in the upper atmosphere. Rev Geophys 12:193–216. https://doi.org/10.1029/RG012i002p00193

    Article  Google Scholar 

  • Yiğit E, Medvedev AS (2012) Gravity waves in the thermosphere during a sudden stratospheric warming. Geophys Res Lett 39:L21101. https://doi.org/10.1029/2012GL053812

    Article  Google Scholar 

  • Yiğit E, Medvedev AS (2015) Internal wave coupling processes in Earth’s atmosphere. Adv Space Res 55:983–1003. https://doi.org/10.1016/j.asr.2014.11.020

    Article  Google Scholar 

  • Zhang X, Tang L (2015) Traveling ionospheric disturbances triggered by the 2009 North Korean underground nuclear explosion. Ann Geophys 33:137–142. https://doi.org/10.5194/angeo-33-137-2015

    Article  Google Scholar 

  • Zou C-Z, Qian H, Wang W et al (2014) Recalibration and merging of SSU observations for stratospheric temperature trend studies. J Geophys Res Atmos 119:13180–13205. https://doi.org/10.1002/2014JD021603

    Article  Google Scholar 

Download references

Acknowledgements

Support by the Grant Agency of the Czech Republic via Grants 15-03909S and 13-09778P is acknowledged and the European Commission’s project ARISE2 (Grant Agreement 653980).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Laštovička .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laštovička, J., Šindelářová, T. (2019). Large-Scale and Transient Disturbances and Trends: From the Ground to the Ionosphere. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_25

Download citation

Publish with us

Policies and ethics