Skip to main content

Recent Dynamic Studies on the Middle Atmosphere at Mid- and Low-Latitudes Using Rayleigh Lidar and Other Technologies

  • Chapter
  • First Online:
Book cover Infrasound Monitoring for Atmospheric Studies

Abstract

The vertical structure of the middle atmosphere (stratosphere and mesosphere) is mainly driven by the absorption of solar radiation by ozone, which is maximum at the stratopause defining the limit between the two layers. However, the meridional structure of the temperature field is far from the radiative equilibrium, especially in the upper mesosphere where the coldest temperatures are reached at the summer pole. This structure can be only explained if we consider the vertical and meridional circulation driven by planetary and gravity wave propagation and breaking. Rayleigh lidars providing time-resolved accurate temperature profiles from the middle stratosphere to the top of mesosphere are very efficient tools to study the characteristics of these waves and their impact on the mean temperature and wind fields. Together with other types of instrument setup in the frame of the European Design Study projects ARISE and -ARISE2, Doppler wind lidars, Mesosphere–Stratosphere–Troposphere (MST) and meteor radars, the IMS (International Monitoring System) infrasound network, airglow imagers and ionospheric sounders, they will contribute to a better knowledge and a better representation of middle atmospheric processes in numerical weather prediction and climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander MJ, Geller M, McLandress C, Polavarapu S, Preusse P, Sassi F, Sato K, Eckermann S, Ern M, Hertzog A, Kawatani YA, Pulido M, Shaw T, Sigmond M, Vincent R, Watanabe S (2010) Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q J R Meteorol Soc 136:1103–1124. https://doi.org/10.1002/qj.637

    Article  Google Scholar 

  • Andrews D, Taylor F, McIntyre M (1987) The influence of atmospheric waves on the general circulation of the middle atmosphere [and discussion]. Philos Trans R Soc Lond Ser A Math Phys Sci 323(1575):693–705. http://www.jstor.org/stable/38143

    Article  Google Scholar 

  • Angot G, Keckhut P, Hauchecorne A, Claud C (2012) Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute-Provence Observatory (44°N). J Geophys Res 117:D21102. https://doi.org/10.1029/2012JD017631

    Article  Google Scholar 

  • Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC, Kuo YH, Liu H, Manning K, McCormick C, Meethan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE, Wee TK, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 mission early results. Bull Am Meteorol Soc 89(3): 313–333. https://doi.org/10.1175/bams-89-3-313

    Article  Google Scholar 

  • Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M (2001) The Quasi-Biennial Oscillation. Rev Geophys 39:179–229

    Article  Google Scholar 

  • Belloul B, Hauchecorne A (1997) Horizontal homogeneities in occultation methods: the case of atmospheric gravity waves. Radio Sci 32:469–478

    Article  Google Scholar 

  • Blanc E, Pol K, Le Pichon A, Hauchecorne A, Keckhut P, Baumgarten G, Hildebrand J, Höffner J, Stober G, Hibbins R, Espy P, Rapp M, Kaifler B, Ceranna L, Hupe P, Hagen J, Rüfenacht R, Kämpfer N, Smets P (2019) Middle atmosphere variability and model uncertainties as investigated in the framework of the ARISE project. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 845–887

    Google Scholar 

  • Butchart N (2014) The Brewer-Dobson circulation. Rev Geophys 52:157–184. https://doi.org/10.1002/2013RG000448

    Article  Google Scholar 

  • Butler AH, Seidel DJ, Hardiman SC, Butchart N, Birner T, Match A (2015) Defining sudden stratospheric warmings. Bull Am Meteorol Soc 96:1913–1928

    Article  Google Scholar 

  • Chane Ming F, Molinaro F, Leveau J, Keckhut P, Hauchecorne A (2000) Analysis of gravity waves in the tropical middle atmosphere with lidar using wavelet techniques. Ann Geophys 18:485–498

    Google Scholar 

  • Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J Clim 20(3):449–469. https://doi.org/10.1175/JCLI3996.1

    Article  Google Scholar 

  • Charney JG, Drazin PG (1961) Propagation of planetary scale disturbances from the lower into the upper atmosphere. J Geophys Res 66:83–109

    Article  Google Scholar 

  • Cohen J, Jones J (2011) Tropospheric precursors and stratospheric warmings. J Clim 24:6562–6572. https://doi.org/10.1175/2011JCLI4160.1

    Article  Google Scholar 

  • Duck TJ, Whiteway JA, Carswell AI (2001) The gravity wave-arctic stratospheric vortex interaction. J Atmos Sci 58(23):3581–3596. https://doi.org/10.1175/1520-0469(2001)058<3581:tgwasv>2.0.co;2

    Article  Google Scholar 

  • Faber A, Llamedo P, Schmidt T, de la Torre A, Wickert J (2013) On the determination of gravity wave momentum flux from GPS radio occultation data. Atmos Meas Tech 6:3169–3180. https://doi.org/10.5194/amt-6-3169-2013

    Article  Google Scholar 

  • Fleming EL, Chandra S, Schoeberl MR, Barnett JJ (1988) Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km. NASA Tech Memo 100697

    Google Scholar 

  • Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41:1003. https://doi.org/10.1029/2001RG000106

    Article  Google Scholar 

  • Funatsu B, Claud C, Keckhu P, Hauchecorne A, Leblanc T (2016) Regional and seasonal stratospheric temperature trends in the last decade (2002–2014) from AMSU observations. J Geophys Res 121(14):8172–8185

    Google Scholar 

  • Hajj GA, Kursinski ER, Romans LJ, Bertiger WI, Leroy SS (2002) A technical description of atmospheric sounding by GPS occultation. J Atmos Sol-Terr Phys 64:451–469. https://doi.org/10.1016/S1364-6826(01)00114-6

    Article  Google Scholar 

  • Hauchecorne A, Chanin ML (1980) Density and temperature profiles obtained by lidar between 30 and 70 km. Geophys Res Lett 7:564–568

    Article  Google Scholar 

  • Hauchecorne A, Chanin ML (1983) Mid-latitude observations of planetary waves in the middle atmosphere during the winter of 1981–1982. J Geophys Res 88:3843–3849

    Article  Google Scholar 

  • Hauchecorne A, Chanin ML, Wilson R (1987) Mesospheric temperature inversion and gravity wave breaking. Geophys Res Lett 14:933–936

    Article  Google Scholar 

  • Hauchecorne A, Chanin ML (1988) Planetary waves-mean flow interaction in the middle atmosphere: modelisation and comparison with lidar observations. Ann Geophys 6:409–416

    Google Scholar 

  • Hauchecorne A, Chanin ML, Keckhut P (1991) Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar above south of France. J Geophys Res 96:15297–15309

    Article  Google Scholar 

  • Hauchecorne A, Gonzalez N, Souprayen C, Manson AH, Meek CE, Singer W, Fahrytdinova AN, Hoppe UP, Boska J, Lastovicka J, Scheer J, Reisin ER, Graef H (1994) Gravity wave activity and its relation with prevailing winds during DYANA. J Atmos Terr Phys 56:1765–1778

    Article  Google Scholar 

  • Hauchecorne A, Keckhut P, Chanin ML (2006) Interannual variability and long term changes in planetary wave activity in the middle atmosphere observed by lidar. Atmos Chem Phys Discuss 6:11299–11316. https://doi.org/10.5194/acpd-6-11299-2006

    Article  Google Scholar 

  • Hauchecorne A, Keckhut P, Chanin ML (2009) Dynamics and transport in the middle atmosphere. Infrasound monitoring for atmospheric studies, Springer, pp 665–683, Earth and Environmental

    Google Scholar 

  • Hauchecorne A, Bertaux JL, Dalaudier F, Keckhut P, Lemennais P, Bekki S, Marchand M, Lebrun JC, Kyrölä E, Tamminen J, Sofieva V, Fussen D, Vanhellemont F, Fanton d’Andon O, Barrot G, Blanot L, Fehr T, Saavedra de Miguel L (2010) Response of tropical stratospheric O3, NO2 and NO3 to the equatorial Quasi-Biennial Oscillation and to temperature as seen from GOMOS/ENVISAT. Atmos Chem Phys 10:8873–8879

    Article  Google Scholar 

  • Kasahara A (1980) Effect of zonal flows on the free oscillations of a barotropic atmosphere. J Atmos Sci 37:917–929

    Article  Google Scholar 

  • Khaykin S, Hauchecorne A, Mze N, Keckhut P (2015) Seasonal variation of gravity wave activity at midlatitudes from 7 years of COSMIC GPS and Rayleigh lidar temperature observations. Geophys Res Lett 42(4):1251–1258

    Article  Google Scholar 

  • Keckhut P, Hauchecorne A, Chanin ML (1993) A critical review of the data base acquired for the long term surveillance of the middle atmosphere by Rayleigh lidar. J Atmos Ocean Tech 10:850–867

    Article  Google Scholar 

  • Keckhut P, Hauchecorne A, Chanin ML (1995) Mid-latitude long-term variability of the middle atmosphere: trends, cyclic and episodic changes. J Geophys Res 100:18887–18897

    Article  Google Scholar 

  • Keckhut P, Courcoux Y, Baray J-L, Porteneuve J, Vérèmes H, Hauchecorne A, Dionisi D, Posny F, Cammas J-P, Payen G, Gabarrot F et al (2015a) Introduction to the Maïdo Lidar Calibration Campaign dedicated to the validation of upper air meteorological parameters. J Appl Remote Sens 9(1):094099. https://doi.org/10.1117/1.JRS.9.094099

    Article  Google Scholar 

  • Keckhut P, Funatsu BM, Claud C, Hauchecorne A (2015b) Tidal effects on stratospheric temperature series derived from successive advanced microwave sounding units. Q J R Meteorol Soc 141(687):477–483

    Article  Google Scholar 

  • Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102:23429–23465. https://doi.org/10.1029/97JD01569

    Article  Google Scholar 

  • Labitzke K (1981) Stratospheric-mesospheric midwinter disturbances: a summary of observed characteristics. J Geophys Res 86(C10):9665–9678. https://doi.org/10.1029/JC086iC10p09665

    Article  Google Scholar 

  • Lee C, Smets P, Charlton-Perez A, Evers L, Harrison G, Marlton G (2019) The potential impact of upper stratospheric measurements on sub-seasonal forecasts in the extra-tropics. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 889–910

    Google Scholar 

  • Le Pichon A, Assink JD, Heinrich P, Blanc E, Charlton-Perez AJ, Lee C-F, Keckhut P, Hauchecorne A, Rüfenacht R, Kämpfer N, Drob D et al (2015) Comparison of co-located independent ground-based middle-atmospheric wind and temperature measurements with numerical weather prediction models. J Geophys Res 120 (16):8318–8331. https://doi.org/10.1002/2015jd023273

    Google Scholar 

  • Li T, Leblanc T, McDermid IS, Wu DL, Dou X, Wang S (2010) Seasonal and interannual variability of gravity wave activity revealed by long-term lidar observations over Mauna Loa Observatory, Hawaii. J Geophys Res 115:D13103. https://doi.org/10.1029/2009JD013586

    Article  Google Scholar 

  • Lindzen RS (1981) Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res 86(C10):9707–9714. https://doi.org/10.1029/JC086iC10p09707

    Article  Google Scholar 

  • Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J Atmos Sci 28:1479–1494

    Article  Google Scholar 

  • Maury P, Claud C, Manzini E, Hauchecorne A, Keckhut P (2016) Characteristics of stratospheric warming events during Northern winter. J Geophys Res 121:5368–5380. https://doi.org/10.1002/2015jd024226

    Google Scholar 

  • Mzé N, Hauchecorne A, Keckhut P, Thétis M (2014) Vertical distribution of gravity wave potential energy from long-term Rayleigh lidar data at a northern middle-latitude site. J Geoph Res: Atmos 119(21):12069–12083. https://doi.org/10.1002/2014jd022035

    Google Scholar 

  • Naujokat B (1986) An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J Atmos Sci 43:1873–1877

    Article  Google Scholar 

  • Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107(A12):1468. https://doi.org/10.1029/2002JA009430

    Article  Google Scholar 

  • Ramaswamy V et al (2001) Stratospheric temperature trends: observations and model simulations. Rev Geophys 39(1):71–122. https://doi.org/10.1029/1999RG000065

    Article  Google Scholar 

  • Randel WJ, Shine KP, Austin J, Barnett J, Claud C, Gillett NP, Keckhut P, Langematz U, Lin R, Long C, Mears C, Miller A, Nash J, Seidel DJ, Thompson DWJ, Wu F, Yoden S (2009) An update of observed stratospheric temperature trends. J Geophys Res 114:D02107. https://doi.org/10.1029/2008JD010421

    Article  Google Scholar 

  • Rauthe M, Gerding M, Höffner J, Lübken FJ (2006) Lidar temperature measurements of gravity waves over Kühlungsborn (54 N) from 1 to 105 km: A winter-summer comparison. J Geophys Res 111:D24108. https://doi.org/10.1029/2006JD007354

    Article  Google Scholar 

  • Rauthe M, Gerding M, Lübken FJ (2008) Seasonal changes in gravity wave activity measured by lidars at mid-latitudes. Atmos Chem Phys 8:6775–6787. https://doi.org/10.5194/acp-8-6775-2008

    Article  Google Scholar 

  • Shepherd TG (2000) The middle atmosphere. J Atmos Sol-Terr Phys 62:1587–1601

    Article  Google Scholar 

  • Sica RJ, Argall PS (2007) Seasonal and nightly variations of gravity-wave energy density in the middle atmosphere measured by the Purple Crow Lidar. Ann Geophys 25:2139–2145. https://doi.org/10.5194/angeo-25-2139-2007

    Article  Google Scholar 

  • Sivakumar V, Rao PB, Bencherif H (2006) Lidar observations of middle atmospheric gravity wave activity over a low-latitude site (Gadanki, 13.5°N, 79.2°E). Ann Geophys 24:823–834: https://doi.org/10.5194/angeo-24-823-2006

    Article  Google Scholar 

  • Steiner AK, Hunt D, Ho SP, Kirchengast G, Mannucci AJ, Scherllin-Pirscher B, Gleisner H, von Engeln A, Schmidt T, Ao C, Leroy SS, Kursinski ER, Foelsche U, Gorbunov M, Heise S, Kuo YH, Lauritsen KB, Marquardt C, Rocken C, Schreiner W, Sokolovskiy S, Syndergaard S, Wickert J (2013) Quantification of structural uncertainty in climate data records from GPS radio occultation. Atmos Chem Phys 13:1469–1484. https://doi.org/10.5194/acp-13-1469-2013

    Article  Google Scholar 

  • Whiteway JA, Duck TJ, Donovan DP, Bird JC, Pal SR, Carswell AI (1997) Measurements of gravity wave activity within and around the Arctic stratospheric vortex. Geophys Res Lett 24:1387–1390. https://doi.org/10.1029/97GL01322

    Article  Google Scholar 

  • Wickert J, Schmidt T, Beyerle G, Konig R, Reigber C, Jakowski N (2004) The radio occultation experiment aboard CHAMP: operational data analysis and validation of vertical atmospheric profiles. J Meteorol Soc Jpn 82:381–395. https://doi.org/10.2151/jmsj.2004.381

    Article  Google Scholar 

  • Wilson R, Hauchecorne A, Chanin ML (1990) Gravity wave spectra in the middle atmosphere as observed by Rayleigh lidar. Geophys Res Lett 17:1585–1588

    Article  Google Scholar 

  • Wilson R, Chanin ML, Hauchecorne A (1991a) Gravity waves in the middle atmosphere by Rayleigh Lidar, Part. 1: Case studies. J Geophys Res 96:5153–5167

    Article  Google Scholar 

  • Wilson R, Chanin ML, Hauchecorne A (1991b) Gravity waves in the middle atmosphere by Rayleigh Lidar, Part. 2: Climatology. J Geophys Res 96:5169–5183

    Article  Google Scholar 

  • Yamashita C, Chu X, Liu HL, Espy PJ, Nott GJ, Huang W (2009) Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica. J Geophys Res 114:D12101. https://doi.org/10.1029/2008JD011472

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by ARISE (FP7) and ARISE2 (H2020), Grant agreement 653980 design study projects, funded by the European Union and by Stradivarius project funded by the Agence Nationale de la Recherche, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Hauchecorne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hauchecorne, A., Khaykin, S., Keckhut, P., Mzé, N., Angot, G., Claud, C. (2019). Recent Dynamic Studies on the Middle Atmosphere at Mid- and Low-Latitudes Using Rayleigh Lidar and Other Technologies. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_24

Download citation

Publish with us

Policies and ethics