Skip to main content

Detection of Infrasound Signals and Sources Using a Dense Seismic Network

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

This new era of massive datasets gives us the opportunity to examine Earth structure and geophysical phenomena in more detail than previously possible. Large datasets hold much promise for transformative research but require new analytical methods that are both efficient and capable of extracting useful information from faint signals immersed in noise. With these needs in mind, we developed the AELUMA (Automated Event Location Using a Mesh of Arrays) method that recasts any dense network of sensors as a distributed mesh of small triangular arrays (triads). Each array provides a local estimate of signal properties. Information from arrays distributed across the footprint of the network is combined to estimate the source origin time and location. The process is repeated without oversight to catalog events that have occurred over a period of time. We have analyzed ground-coupled airwaves recorded on vertical component broadband seismometers of the USArray Transportable Array (TA). We estimate the accuracy of the AELUMA algorithm using ground truth events at the Utah Test and Training Range (UTTR). In a study of 23 surface explosions, the mean AELUMA source location estimate is 8.6 km northwest of the ground truth location. The origin time estimates were late for most events. The mean time misfit is 19 s with a standard deviation of 39 s. We attribute the positive bias in origin time estimates to signal dispersion, as the AELUMA method estimates the time of the signal’s peak amplitude, not its onset. A comparison of AELUMA and a reverse time migration method indicates that AELUMA is more sensitive to faint signals from weak events and the event locations are more accurate in space and time. A catalog of acoustic activity from across the continental United States in the band from 0.7 to 4.0 Hz includes 7935 events that were detected by 10 or more triads. Most events were clustered into hotspots and are likely anthropogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrowsmith SJ, Whitaker R, Taylor SR, Burlacu R, Stump B, Hedlin M, Randall G, Hayward C, ReVelle D (2008) Regional monitoring of infrasound events using multiple arrays: application to Utah and Washington State. Geophys J Int 175:291–300. https://doi.org/10.1111/j.1365-246X.2008.03912.x

    Article  Google Scholar 

  • Arrowsmith SJ, Johnson JB, Drob DP, Hedlin MAH (2010) The seismoacoustic wavefield: a new paradigm in studying geophysical phenomena. Rev Geophys. 48:RG4003. https://doi.org/10.1029/2010rg000335

  • Arrowsmith S, Euler G, Marcillo O, Blom P, Whitaker R, Randall G (2015) Development of a robust and automated infrasound event catalogue using the International Monitoring System. Geophys J Int 200:1411–1422. https://doi.org/10.1093/gji/ggu486

    Article  Google Scholar 

  • Assink J, Smets P, Marcillo O, Weemstra C, Lalande J-M, Waxler R, Evers LG (2019) Advances in infrasonic remote sensing methods. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632

    Google Scholar 

  • Assink JD, Waxler R, Frazier WG, Lonzaga J (2013) The estimation of upper atmospheric wind model updates from infrasound data. J Geophys Res Atmos 118:10707–10724. https://doi.org/10.1002/jgrd.50833

    Article  Google Scholar 

  • Brown DJ, Katz CN, Le Bras R, Flanagan MP, Wang J, Gault AK (2002) Infrasonic signal detection and source location at the Prototype International Data Centre. Pure Appl Geophys. 159:1081–1125. https://doi.org/10.1007/s00024-002-8674-2

    Article  Google Scholar 

  • Busby RW, Vernon FL, Newman RL, Astiz L (2006) Earth-Scope’s USArray: advancing eastward. EOS, Trans Am Geophys Un 87(52), Fall Meeting, Supplement, Abstract U41B-0820

    Google Scholar 

  • Cansi Y (1995) An automatic seismic event processing for detection and location: the P.M.C.C. method. Geophys Res Lett 22:1021–1024

    Article  Google Scholar 

  • Campus P, Christie DR (2010) In: Le Pichon A, Blanc E, Hauchecorne A (eds) Worldwide observations of infrasonic waves. Springer, pp 185–234. https://doi.org/10.1007/978-1-4020-9508-5_6

    Google Scholar 

  • Ceranna L, Le Pichon A, Green DN, Mialle P (2009) The Buncefield explosion: a benchmark for infrasound analysis across central Europe. Geophys J Int 177(2):491–508. https://doi.org/10.1111/j.1365-246X.2008.03998.x

    Article  Google Scholar 

  • Christie DR, Campus P (2010) The IMS infrasound network: design and establishment of infrasound stations. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, pp 27–72. https://doi.org/10.1007/978-1-4020-9508-5_2

    Google Scholar 

  • Chunchuzov I, Kulichkov S (2019) Internal gravity wave perturbations and their impacts on infrasound propagation in the atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 551–590

    Google Scholar 

  • Chunchuzov I, Kulichkov S, Popov O, Hedlin M (2014) Modeling propagation of infrasound signals observed by a dense seismic network. J Acoust Soc Am 135(1)

    Article  Google Scholar 

  • Chunchuzov I, Kulichkov S, Perepelkin V, Popov O, Firstov P, Assink JD, Marchetti E (2015) Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere. J Geophys Res Atmos 120:8828–8840. https://doi.org/10.1002/2015JD023276

    Article  Google Scholar 

  • Crampin S (1966) Higher-mode seismic surface waves from atmospheric nuclear explosions over Novaya Zemlya. J Geophys Res 71:2951–2958

    Article  Google Scholar 

  • Cochran ES, Shearer PM (2006) Infrasound events detected with the Southern California Seismic Network. Geophys Res Lett 33:L19803. https://doi.org/10.1029/2006GL026951

    Article  Google Scholar 

  • de Groot-Hedlin CD, Hedlin MAH, Walker KT, Drob DD, Zumberge MA (2008) Evaluation of infrasound signals from the shuttle Atlantis using a large seismic network. J Acoust Soc Am 124:1442–1451. https://doi.org/10.1121/1.2956475

    Article  Google Scholar 

  • de Groot-Hedlin CD, Hedlin MAH, Drob D (2010) Atmospheric variability and infrasound monitoring. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, New York, pp 475–507. https://doi.org/10.1007/978-1-4020-9508-5_15

    Google Scholar 

  • de Groot-Hedlin CD, Hedlin MAH, Walker KT (2013) Detection of gravity waves across the USArray: a case study. Earth Planet Sci Lett. http://dx.doi.org/10.1016/j.epsl.2013.06.042

  • de Groot-Hedlin CD, Hedlin MAH (2014a) Infrasound detection of the Chelyabinsk meteor at the USArray. Earth Planet Sci Lett 402:337–345

    Article  Google Scholar 

  • de Groot-Hedlin CD, Hedlin MAH (2014b) Detection of seismic and infrasound sources at the USArray Transportable Array, 2016 AGU meeting

    Google Scholar 

  • de Groot-Hedlin CD, Hedlin MAH (2015) A method for detecting and locating geophysical events using groups of arrays. Geophys J Int 203:960–971. https://doi.org/10.1093/gji/ggv345

    Article  Google Scholar 

  • Delclos C, Blanc E, Broche P, Glangeaud F, Lacoume JL (1990) Processing and interpretation of microbarograph signals generated by the explosion of Mount St. Helens. J Geophys Res 95(D5):5485–5494. https://doi.org/10.1029/JD095iD05p05485

    Article  Google Scholar 

  • Donn WL, Rind D (1971) Natural infrasound as an atmospheric probe. Geophys J R Astron Soc 26:111–133

    Article  Google Scholar 

  • Drob DP, Picone JM, Garcés M (2003) Global morphology of infrasound propagation. J Geophys Res Atmos 108(D21):4680. https://doi.org/10.1029/2002JD003307

    Article  Google Scholar 

  • Drob DP, Broutman D, Hedlin MAH, Winslow NW, Gibson RG (2013) A method for specifying atmospheric gravity-wave fields for long-range infrasound propagation calculations. J Geophys Res. https://doi.org/10.1029/2012JD018077

    Article  Google Scholar 

  • Drob DP, Meier RR, Picone JM, Garcés MM (2010) Inversion of infrasound signals for passive remote sensing. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, New York, pp 701–731. https://doi.org/10.1007/978-1-4020-9508-5_24

    Google Scholar 

  • Edwards WN, Eaton DW, McCausland PJ, ReVelle DO, Brown PG (2007) Calibrating infrasonic to seismic coupling using the Stardust sample return capsule shockwave: implications for seismic observations of meteors. J Geophys Res 112(B10306):1–13. https://doi.org/10.1029/2006JB004621

    Article  Google Scholar 

  • Edwards WN, de Groot-Hedlin CD, Hedlin MAH (2014) Forensic investigation of a probable meteor sighting using USArray acoustic data. Seismol Res Lett 85:1012–1018

    Article  Google Scholar 

  • Evers LG, Haak HW (2005) The detectability of infrasound in The Netherlands from the Italian volcano Mt. Etna. J Atmos Solar-Terr Phys 67:259–268

    Article  Google Scholar 

  • Evers LG, Haak HW (2010) The characteristics of infrasound, its propagation and some early history. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, New York, pp 3–27. https://doi.org/10.1007/978-1-4020-9508-5_1

    Google Scholar 

  • Fee D, Garcés M (2007) Infrasonic tremor in the diffraction zone. Geophys Res Lett 34:L16826. https://doi.org/10.1029/2007GL030616

    Article  Google Scholar 

  • Fee D, Matoza RS (2013) An overview of volcano infrasound; from Hawaiian to Plinian, local to global. J. Volcanol Geotherm Res 249:123–139. https://doi.org/10.1016/j.jvolgeores.2912.09.002

    Article  Google Scholar 

  • Fee D, Waxler R, Assink J, Gitterman Y, Given J, Coyne J, Mialle P, Garcés M, Drob D, Kleinert D, Hofstetter R, Granard P (2013) Overview of the 2009 and 2011 Sayarim infrasound calibration experiments. J Geophys Res Atmos 118:6122–6143. https://doi.org/10.1002/jgrd.50398

    Article  Google Scholar 

  • Fee D, Haney M, Matoza R, Curt Szuberla C, Lyons J, Waythomas C (2016) Seismic envelope-based detection and location of ground-coupled airwaves from Volcanoes in Alaska. Bull Seismol Soc Am. https://doi.org/10.1785/0120150244

    Article  Google Scholar 

  • Fricke JT, Evers LG, Wapenaar K, Simons DG (2014) Infrasonic interferometry applied to microbaroms observed at the Large Aperture Infrasound Array in the Netherlands. J Geophys Res Atmos 119:9654–9665. https://doi.org/10.1002/2014JD021663

    Article  Google Scholar 

  • Garcés M, Willis M, Hetzer C, Le Pichon A, Drob D (2004) On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys Res Lett 31:L19304. https://doi.org/10.1029/2004GL020696

    Article  Google Scholar 

  • Green D, Vergoz J, Gibson R, Pichon AL, Ceranna L (2011) Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths. Geophys J Int 185:890–910. https://doi.org/10.1111/j.1365-246X.2011.04975.x

    Article  Google Scholar 

  • Gibbons SJ, Kværna T, Mykkeltveit S (2015) Could the IMS infrasound stations support a global network of small aperture seismic arrays. Seismol Res Lett 86. https://doi.org/10.1758/0220150068

  • Gibbons S, Kværna T, Näsholm P (2019) Characterization of the infrasonic wavefield from repeating seismo-acoustic events. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 387-407

    Google Scholar 

  • Hagerty MT, Kim WY, Martysevich P (2002) Infrasound detection of large mining blasts in Kazakstan. Pure Appl Geophys 159(5):1063–1079. https://doi.org/10.1007/s00024-002-8673-3

    Article  Google Scholar 

  • Havskov J, Öttemoller L (2010) Routine data processing in earthquake seismology. Springer. https://doi.org/10.1007/978-90-481-8697-6_1

    Chapter  Google Scholar 

  • Hedlin MAH, Walker K (2013) A study of infrasonic anisotropy and multipathing in the atmosphere using seismic networks. Philos Trans R Soc A 371:20110542. https://doi.org/10.1098/rsta.2011.0542

    Article  Google Scholar 

  • Hedlin MAH, Drob D, Walker K, de Groot-Hedlin C (2010) A study of acoustic propagation from a large bolide in the atmosphere with a dense seismic network. J Geophys Res 115:B11312. https://doi.org/10.1029/2010JB007669

    Article  Google Scholar 

  • Hedlin MAH, Drob D (2014) Statistical characterization of atmospheric gravity waves by seismoacoustic observations. J Geophys Res Atmos 119. https://doi.org/10.1002/2013jd021304

    Google Scholar 

  • Ishihara Y, Furumoto M, Sakai S, Tsukada S (2004) The 2003 Kanto large bolide’s trajectory determined from shockwaves recorded by a seismic network and images taken by a video camera. Geophys Res Lett 31:L14702, 0094-8276

    Google Scholar 

  • Kulichkov SN, Chunchuzov IP, Pupov OI (2010) Simulating the influence of an atmospheric fine inhomogeneous structure on long-range propagation of pulsed acoustic signals. Izv Atmos Ocean Phys 46:60–68. https://doi.org/10.1134/S0001433810010093

    Article  Google Scholar 

  • Lalande J-M, Waxler R (2016) The interaction between infrasonic waves and gravity wave perturbations: application to observations using UTTR rocket motor fuel elimination events. J Geophys Res Atmos 121:5585–5600. https://doi.org/10.1002/2015JD024527

    Article  Google Scholar 

  • Lee DT, Schachter BJ (1980) Two algorithms for constructing a Delaunay triangulation. Int J Comput Inf Sci 9:219–242

    Article  Google Scholar 

  • Le Pichon A, Garcés M, Blanc E, Barthelemy M, Drob DP (2002) Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde. J Acoust Soc Am 111:629–641

    Article  Google Scholar 

  • Le Pichon A, Blanc E, Drob D (2005a) Probing high-altitude winds using infrasound. J Geophys Res 110. https://doi.org/10.1029/2005JD006020

  • Le Pichon A, Blanc E, Drob D, Lambotte S, Dessa JX, Lardy M, Bani P, Vergniolle S (2005b) Infrasound monitoring of volcanoes to probe high-altitude winds. J Geophys Res 110. https://doi.org/10.1029/2004JD005587

  • Le Pichon A, Herry P, Mialle P, Vergoz J, Brachet N, Garcés M, Drob D, Ceranna L (2005c) Infrasound associated with 2004–2005 large Sumatra earthquakes and tsunami. Geophys Res Lett 32:L19802. https://doi.org/10.1029/2005GL023893

    Article  Google Scholar 

  • Le Pichon A, Vergoz J, Blanc E, Guilbert J, Ceranna L, Evers L, Brachet N (2009) Assessing the performance of the International Monitoring Systems infrasound network: geographical coverage and temporal variabilities. J Geophys Res 114:D08112. https://doi.org/10.1029/2008JD010907

    Article  Google Scholar 

  • Marchetti E, Ripepe M, Campus P, Le Pichon A, Brachet N, Blanc E, Gaillard P, Mialle P, Husson P (2019) Infrasound monitoring of volcanic eruptions and contribution of ARISE to the volcanic ash advisory centers. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1141–1162

    Google Scholar 

  • Marty J (2019) The IMS infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62

    Google Scholar 

  • Matoza RS, Garcés MA, Chouet BA, D’Auria L, Hedlin MAH, de Groot-Hedlin C, Waite GP (2009) The source of infrasound associated with long-period events at Mount St. Helens. J Geophys Res 114:B04305. https://doi.org/10.1029/2008JB006128

    Article  Google Scholar 

  • Matoza R, Green D, Le Pichon A, Shearer PM, Fee D, Mialle P, Ceranna L (2017) Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network. J Geophys Res 122:2946–2971. https://doi.org/10.1002/2016JB013356

    Google Scholar 

  • Matoza R, Fee D, Green D, Mialle P (2019) Volcano infrasound and the international monitoring system. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1023–1077

    Google Scholar 

  • Millet C, Robinet J-C, Roblin C (2007) On using computational aeroacoustics for long-range propagation of infrasounds in realistic atmospheres. Geophys Res Lett 34:L14814. https://doi.org/10.1029/2007GL029449

    Article  Google Scholar 

  • Öttemoller L, Evers LG (2008) Seismo-acoustic analysis of the Buncefield oil depot explosion in the UK, 2005 December 11. Geophys J Int 172:1123–1134

    Article  Google Scholar 

  • Park J, Arrowsmith SJ, Hayward C, Stump BW, Blom P (2014) Automatic infrasound detection and location of sources in the western United States. J Geophys Res Atmos 119:7773–7798. https://doi.org/10.1002/2013JD021084

    Article  Google Scholar 

  • Park J, Stump BW (2015) Seasonal variations of infrasound detections and their characteristics in the western US. Geosci J 19:97. https://doi.org/10.1007/s12303-014-0034-6

    Article  Google Scholar 

  • Pasko VP (2012) Infrasonic waves generated by supersonic auroral arcs. Geophys Res Lett 39:L19105. https://doi.org/10.1029/2012GL053587

    Article  Google Scholar 

  • Pilger C, Ceranna L, Ross JO, Le Pichon A, Mialle P, Garcés MA (2015) CTBT infrasound network performance to detect the 2013 Russian fireball event. Geophys Res Lett 42:2523–2531. https://doi.org/10.1002/2015GL063482

    Article  Google Scholar 

  • Pilger C, Ceranna L, Le Pichon A, Brown P (2019) Large meteoroids as global infrasound reference events. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 451–470

    Google Scholar 

  • Revelle DO, Brown PG, Spurny P (2004) Entry dynamics and acoustics/infrasonic/seismic analysis for the Neuschwanstein meteorite fall. Meteorit Planet Sci 39:1605–1626

    Article  Google Scholar 

  • Silber E, Brown P (2019) Infrasound monitoring as a tool to characterize impacting near-earth objects (NEOs). In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. 2nd edn. Springer, Dordrecht, pp 939–986

    Google Scholar 

  • Smets PSM, Assink JD, Le Pichon A, Evers LG (2016) ECMWF SSW forecast evaluation using infrasound. J Geophys Res Atmos 121:4637–4650. https://doi.org/10.1002/2015jd024251

    Google Scholar 

  • Sutherland LC, Bass HE (2004) Atmospheric absorption in the atmosphere up to 160 km. J Acoust Soc Am 115:1012–1032

    Article  Google Scholar 

  • Vergoz J, Le Pichon A, Millet C (2019) The antares explosion observed by the USArray: an unprecedented collection of infrasound phases recorded from the same event. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 349–386

    Google Scholar 

  • Vernon F, Tytell J, Busby B, Eakins J, Hedlin M, Muschinski A, Walker K, Woodward B (2012) Scientific viability of the USArray Transportable Array Network as a real-time weather monitoring platform. In: 92nd American meteorological society annual meeting, American Meteor Society, New Orleans, La. https://ams.confex.com/ams/92Annual/webprogram/Paper200044.html

  • Walker K, Hedlin MAH, de Groot-Hedlin CD, Vergoz J, Le Pichon A, Drob D (2010) Source location of the 19 February 2008 Oregon bolide using seismic networks and infrasound arrays. J Geophys Res. https://doi.org/10.1029/2010jb007863

  • Walker KT, Shelby R, Hedlin M, de Groot-Hedlin C, Vernon F (2011) Western U.S. infrasonic catalog: illuminating infrasonic hot spots in the western U.S. with the USArray. J Geophys Res 116:B12305. https://doi.org/10.1029/2011JB008579

    Article  Google Scholar 

  • Walker KT, Le Pichon A, Kim TS, de Groot-Hedlin C, Che Il-Y, Garcés M (2013) An analysis of ground shaking and transmission loss from infrasound generated by the 2011 Tohoku earthquake. J Geophys Res Atmos 118:12805–12815. https://doi.org/10.1002/2013JD020187

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. EAR-1358520. We thank Relu Burlacu for providing ground truth information on the explosions at UTTR. This study would not have been possible without the high-quality data from the USArray TA. The TA is part of the Incorporated Research Institutions for Seismology (IRIS) EarthScope program. The authors thank Jelle Assink for a constructive review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catherine de Groot-Hedlin or Michael Hedlin .

Editor information

Editors and Affiliations

Appendices

Supporting Information

National event catalogs in three bands (0.5–2.0 Hz, 0.7–4.0 Hz, and 2–8 Hz) computed using seismic data collected from 2006 through 2014. Catalog of events in the eastern United States computed using infrasonic data collected in 2012, 2013, and 2014. The AELUMA code is now available on request through product@iris.washington.edu.

Appendix

The AELUMA method is applicable to a wide range of network configurations and signal types, given that parameters are set correctly for signal type sought and the array configuration. Table 21.2 describes the main parameters needed; values used for this study are listed in the final column. The AELUMA code is available on request through product@iris.washington.edu.

Table 21.2 AELUMA parameters

The phase and celerity values depend on the signal type sought. For example, for infrasound, the true phase velocities range from about 320 m/s and up, depending on whether the signal propagates horizontally across the triad or has steep incidence from above. The phase velocities are allowed a wide range, to allow for errors in phase velocity and propagation angle across the triad that derives from the imperfect fit to Eq. 1.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Groot-Hedlin, C., Hedlin, M. (2019). Detection of Infrasound Signals and Sources Using a Dense Seismic Network. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_21

Download citation

Publish with us

Policies and ethics