Skip to main content

Meteorology, Climatology, and Upper Atmospheric Composition for Infrasound Propagation Modeling

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

Over the last decade, there have been improvements in global data assimilation capabilities of the lower, middle, and upper atmosphere. This includes mesoscale specification capabilities for the troposphere. This chapter provides an overview of both operational and basic scientific research specifications of the atmosphere from the ground to the thermosphere that are available for the calculation of infrasound propagation characteristics. This review is intended for scientific experts, nonexperts, researchers, educators, and policy makers alike. As atmospheric specifications for the lower and middle atmosphere are now readily available, less uncertain, and also described in other chapters of this book, some additional emphasis is placed on the challenges associated with upper atmospheric specifications for modeling thermospherically ducted infrasound propagation. Otherwise, no particular emphasis is placed on any one atmospheric specification system or institutional data provider; nor anyone particular infrasound propagation application, i.e., local, regional, global, man-made, or natural.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott BP et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116(061):102. https://doi.org/10.1103/PhysRevLett.116.061102

  • Akmaev R (2011) Whole atmosphere modeling: connecting terrestrial and space weather. Rev Geophys 49(4)

    Google Scholar 

  • Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics, vol 40. Academic press

    Google Scholar 

  • Assink J, Waxler R, Frazier W, Lonzaga J (2013) The estimation of upper atmospheric wind model updates from infrasound data. J Geophys Res Atmos 118(19)

    Google Scholar 

  • Bass HE, Hetzer CH, Raspet R (2007) On the speed of sound in the atmosphere as a function of altitude and frequency. J Geophys Res Atmos 112(D15)

    Google Scholar 

  • Bauer P, Thorpe A, Brunet G (2015) The quiet revolution of numerical weather prediction. Nature 525(7567):47–55

    Article  Google Scholar 

  • Bednarz EM, Maycock AC, Abraham NL, Braesicke P, Dessens O, Pyle JA (2016) Future arctic ozone recovery: the importance of chemistry and dynamics. Atmos Chem Phys 16(18):12,159–12,176

    Article  Google Scholar 

  • Blom PS, Marcillo O, Arrowsmith SJ (2015) Improved bayesian infrasonic source localization for regional infrasound. Geophys J Int 203(3):1682–1693

    Article  Google Scholar 

  • Bonavita M, Hólm E, Isaksen L, Fisher M (2016) The evolution of the ECMWF hybrid data assimilation system. Q J R Meteorol Soc 142(694):287–303

    Article  Google Scholar 

  • Bosilovich M, Akella S, Coy L, Cullather R, Draper C, Gelaro R, Kovach R, Liu Q, Molod A, Norris P et al (2015) Merra-2: initial evaluation of the climate. NASA Technical report series on global modeling and data assimilation, NASA/TM-2015 104606

    Google Scholar 

  • Butchart N, Charlton-Perez A, Cionni I, Hardiman S, Haynes P, Krüger K, Kushner P, Newman P, Osprey S, Perlwitz J et al (2011) Multimodel climate and variability of the stratosphere. J Geophys Res Atmos 116(D5)

    Google Scholar 

  • Chunchuzov I, Kulichkov S (2019) Internal gravity wave perturbations and their impacts on infrasound propagation in the atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 551–590

    Google Scholar 

  • Chunchuzov I, Kulichkov S, Popov O, Waxler R, Assink J (2011) Infrasound scattering from atmospheric anisotropic inhomogeneities. Izv Atmos Oceanic Phys 47(5):540–557

    Article  Google Scholar 

  • Costantino L, Heinrich P, Mzé N, Hauchecorne A (2015) Convective gravity wave propagation and breaking in the stratosphere: comparison between WRF model simulations and lidar data. Ann Geophys 33(9):1155–1171. https://doi.org/10.5194/angeo-33-1155-2015, http://www.ann-geophys.net/33/1155/2015/

    Article  Google Scholar 

  • Courtier P, Thépaut JN, Hollingsworth A (1994) A strategy for operational implementation of 4D-Var, using an incremental approach. Q J R Meteorol Soc 120(519):1367–1387

    Article  Google Scholar 

  • Coy L, Wargan K, Molod AM, McCarty WR, Pawson S (2016) Structure and dynamics of the quasi-biennial oscillation in MERRA-2. J Clim (2016)

    Google Scholar 

  • Cugnet D, de la Camara A, Lott F, Millet C, Ribstein B (2019) Non-orographic gravity waves: representation in climate models and effects on infrasound. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 827–844

    Google Scholar 

  • Daley R (1993) Atmospheric data analysis, no 2. Cambridge university press

    Google Scholar 

  • de Groot-Hedlin CD, Hedlin MA (2015) A method for detecting and locating geophysical events using groups of arrays. Geophys J Int 203(2):960–971

    Google Scholar 

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Douglass A, Strahan S, Oman L, Stolarski R (2014) Understanding differences in chemistry climate model projections of stratospheric ozone. J Geophys Res Atmos 119(8):4922–4939

    Article  Google Scholar 

  • Drob DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, Conde M, Hernandez G, Noto J, Zawdie KA, McDonald SE et al (2015) An update to the horizontal wind model (HWM): the quiet time thermosphere. Earth Space Sci 2(7):301–319

    Article  Google Scholar 

  • Drob DP, Garcés M, Hedlin M, Brachet N (2010a) The temporal morphology of infrasound propagation. Pure Appl Geophys 167(4–5):437–453

    Article  Google Scholar 

  • Drob DP, Meier R, Picone JM, Garcés MM (2010b) Inversion of infrasound signals for passive atmospheric remote sensing. Infrasound monitoring for atmospheric studies. Springer, pp 701–731

    Google Scholar 

  • Drob DP, Picone J, Garcés M (2003) Global morphology of infrasound propagation. J Geophys Res Atmos 108(D21)

    Google Scholar 

  • Drob D, Broutman D, Hedlin M, Winslow N, Gibson R (2013) A method for specifying atmospheric gravity wavefields for long-range infrasound propagation calculations. J Geophys Res Atmos 118(10):3933–3943

    Google Scholar 

  • Edwards PN (2010) A vast machine: computer models, climate data, and the politics of global warming. Mit Press

    Google Scholar 

  • Ern M, Preusse P, Warner C (2006) Some experimental constraints for spectral parameters used in the Warner and Mcintyre gravity wave parameterization scheme. Atmos Chem Phys 6(12):4361–4381

    Article  Google Scholar 

  • Ern M, Trinh QT, Kaufmann M, Krisch I, Preusse P, Ungermann J, Zhu Y, Gille JC, Mlynczak MG, Russell III JM, Schwartz MJ, Riese M (2016) Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings. Atmos Chem Phys 16(15):9983–10,019. https://doi.org/10.5194/acp-16-9983-2016, http://www.atmos-chem-phys.net/16/9983/2016/

    Article  Google Scholar 

  • Evers L, Geyt A, Smets P, Fricke J (2012) Anomalous infrasound propagation in a hot stratosphere and the existence of extremely small shadow zones. J Geophys Res Atmos 117(D6)

    Article  Google Scholar 

  • Evers L, Haak H (2007) Infrasonic forerunners: exceptionally fast acoustic phases. Geophys Res Lett 34(10)

    Google Scholar 

  • Fleagle RG, Businger JA (1981) An introduction to atmospheric physics, vol 25. Academic Press

    Google Scholar 

  • Forbes JM, Wu D (2006) Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS. J Atmos Sci 63(7):1776–1797

    Article  Google Scholar 

  • Franke S, Chu X, Liu A, Hocking W (2005) Comparison of meteor radar and Na Doppler lidar measurements of winds in the mesopause region above Maui, Hawaii. J Geophys Res Atmos 110(D9)

    Google Scholar 

  • Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1)

    Google Scholar 

  • Fuller-Rowell TJ, Rees D (1980) A three-dimensional time-dependent global model of the thermosphere. J Atmos Sci 37(11):2545–2567

    Article  Google Scholar 

  • Fuller-Rowell T, Codrescu M, Moffett R, Quegan S (1994) Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res Space Phys 99(A3):3893–3914

    Article  Google Scholar 

  • Fuller-Rowell T, Millward G, Richmond A, Codrescu M (2002) Storm-time changes in the upper atmosphere at low latitudes. J Atmos Solar Terr Phys 64(12):1383–1391

    Article  Google Scholar 

  • Funatsu BM, Claud C, Keckhut P, Hauchecorne A, Leblanc T (2016) Regional and seasonal stratospheric temperature trends in the last decade (2002–2014) from AMSU observations. J Geophys Res Atmos 121(14):8172–8185

    Google Scholar 

  • Garcés MA, Hansen RA, Lindquist KG (1998) Traveltimes for infrasonic waves propagating in a stratified atmosphere. Geophys J Int 135(1):255–263

    Google Scholar 

  • Garcia RR, López-Puertas M, Funke B, Kinnison DE, Marsh DR, Qian L (2016) On the secular trend of COx and CO2 in the lower thermosphere. J Geophys Res Atmos 121(7):3634–3644

    Google Scholar 

  • Geller MA, Alexander MJ, Love PT, Bacmeister J, Ern M, Hertzog A, Manzini E, Preusse P, Sato K, Scaife AA et al (2013) A comparison between gravity wave momentum fluxes in observations and climate models. J Clim 26(17):6383–6405

    Article  Google Scholar 

  • Georges T, Beasley WH (1977) Refraction of infrasound by upper-atmospheric winds. J Acoust Soc Am 61(1):28–34

    Article  Google Scholar 

  • Giraldo FX, Restelli M (2008) A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: equation sets and test cases. J Comput Phys 227(8):3849–3877

    Article  Google Scholar 

  • Gombosi TI (1994) Gaskinetic theory, no 9. Cambridge University Press

    Google Scholar 

  • Gossard EE, Hooke WH (1975) Waves in the atmosphere: atmospheric infrasound and gravity waves-their generation and propagation. Atmos Sci 2

    Google Scholar 

  • Green DN, Vergoz J, Gibson R, Le Pichon A, Ceranna L (2011) Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths. Geophys J Int 185(2):890–910

    Article  Google Scholar 

  • Harada Y, Kamahori H, Kobayashi C, Endo H, Kobayashi S, Ota Y, Onoda H, Onogi K, Miyaoka K, Takahashi K (2016) The JRA-55 reanalysis: representation of atmospheric circulation and climate variability. J Meteorol Soc Jpn Ser II 94(3):269–302. https://doi.org/10.2151/jmsj.2016-015

    Article  Google Scholar 

  • Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res Space Phys 92(A5):4649–4662

    Article  Google Scholar 

  • Hedlin MA, Drob DP (2014) Statistical characterization of atmospheric gravity waves by seismoacoustic observations. J Geophys Res Atmos 119(9):5345–5363

    Google Scholar 

  • Hedlin MA, Walker KT (2013) A study of infrasonic anisotropy and multipathing in the atmosphere using seismic networks. Phil Trans R Soc A 371(1984):20110,542

    Article  Google Scholar 

  • Hertzog A, Alexander MJ, Plougonven R (2012) On the intermittency of gravity wave momentum flux in the stratosphere. J Atmos Sci 69(11):3433–3448

    Article  Google Scholar 

  • Hines CO (1960) Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38(11):1441–1481

    Article  Google Scholar 

  • Honda Y, Nishijima M, Koizumi K, Ohta Y, Tamiya K, Kawabata T, Tsuyuki T (2005) A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan meteorological agency: formulation and preliminary results. Q J R Meteorol Soc 131(613):3465–3475

    Article  Google Scholar 

  • Houtekamer PL, Zhang F (2016) Review of the ensemble kalman filter for atmospheric data assimilation. Monthly Weather Rev 144(12):4489–4532. https://doi.org/10.1175/MWR-D-15-0440.1

    Article  Google Scholar 

  • Jewtoukoff V, Hertzog A, Plougonven R, Adl Cámara, Lott F (2015) Comparison of gravity waves in the southern hemisphere derived from balloon observations and the ECMWF analyses. J Atmos Sci 72(9):3449–3468

    Article  Google Scholar 

  • Jin H, Miyoshi Y, Fujiwara H, Shinagawa H, Terada K, Terada N, Ishii M, Otsuka Y, Saito A (2011) Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new earth’s whole atmosphere-ionosphere coupled model. J Geophys Res Space Phys 116(A1)

    Article  Google Scholar 

  • Kidston J, Scaife AA, Hardiman SC, Mitchell DM, Butchart N, Baldwin MP, Gray LJ (2015) Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geosci 8(6):433–440

    Article  Google Scholar 

  • Kulichkov S, Chunchuzov I, Popov O (2010) Simulating the influence of an atmospheric fine inhomogeneous structure on long-range propagation of pulsed acoustic signals. Izv Atmos Oceanic Phys 46(1):60–68

    Article  Google Scholar 

  • Lacanna G, Ichihara M, Iwakuni M, Takeo M, Iguchi M, Ripepe M (2014) Influence of atmospheric structure and topography on infrasonic wave propagation. J Geophys Res Solid Earth 119(4):2988–3005

    Google Scholar 

  • Lalande JM, Waxler R (2016) The interaction between infrasonic waves and gravity wave perturbations: Application to observations using UTTR rocket motor fuel elimination events. J Geophys Res Atmos

    Google Scholar 

  • Le Pichon A, Garcés M, Blanc E, Barthélémy M, Drob DP (2002) Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde. J Acoust Soc Am 111(1):629–641

    Google Scholar 

  • LeGrande AN, Tsigaridis K, Bauer SE (2016) Role of atmospheric chemistry in the climate impacts of stratospheric volcanic injections. Nature Geosci

    Google Scholar 

  • Liu AZ, Hocking WK, Franke SJ, Thayaparan T (2002) Comparison of Na lidar and meteor radar wind measurements at Starfire Optical Range, NM, USA. J Atmos Solar Terr Phys 64(1):31–40

    Article  Google Scholar 

  • Liu HL, Foster B, Hagan M, McInerney J, Maute A, Qian L, Richmond A, Roble R, Solomon S, Garcia R et al (2010) Thermosphere extension of the whole atmosphere community climate model. J Geophys Res Space Phys 115(A12)

    Google Scholar 

  • Liu HL (2016) Variability and predictability of the space environment as related to lower atmosphere forcing. Space Weather

    Google Scholar 

  • Lonzaga JB, Waxler RM, Assink JD, Talmadge CL (2015) Modelling waveforms of infrasound arrivals from impulsive sources using weakly non-linear ray theory. Geophys J Int 200(3):1347–1361

    Article  Google Scholar 

  • Lorenc AC (2003) The potential of the ensemble Kalman filter for NWP–a comparison with 4D-Var. Q J R Meteorol Soc 129(595):3183–3203

    Article  Google Scholar 

  • Marcillo O, Arrowsmith S, Whitaker R, Anderson D, Nippress A, Green DN, Drob D (2013) Using physics-based priors in a Bayesian algorithm to enhance infrasound source location. Geophys J Int 353

    Google Scholar 

  • Marsh DR (2011) Chemical–dynamical coupling in the mesosphere and lower thermosphere. Aeronomy of the earth’s atmosphere and ionosphere. Springer, pp 3–17

    Google Scholar 

  • Millet C, Robinet JC, Roblin C (2007) On using computational aeroacoustics for long-range propagation of infrasounds in realistic atmospheres. Geophys Res Lett 34(14)

    Google Scholar 

  • Mohr PJ, Taylor BN, Newell DB (2012) CODATA recommended values of the fundamental physical constants: 2010. J Phys Chem Ref Data 41(4):043,109

    Google Scholar 

  • Orr A, Bechtold P, Scinocca J, Ern M, Janiskova M (2010) Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization. J Clim 23(22):5905–5926

    Article  Google Scholar 

  • Pedatella N, Richmond A, Maute A, Liu HL (2016) Impact of semidiurnal tidal variability during SSWS on the mean state of the ionosphere and thermosphere. J Geophys Res Space Phys 121(8):8077–8088

    Google Scholar 

  • Picone J, Hedin A, Drob DP, Aikin A (2002) NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res Space Phys 107(A12)

    Article  Google Scholar 

  • Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53(2):323–361

    Article  Google Scholar 

  • Preusse P, Ern M, Bechtold P, Eckermann SD, Kalisch S, Trinh QT, Riese M (2014) Characteristics of gravity waves resolved by ECMWF. Atmos Chem Phys 14(19):10,483–10,508. https://doi.org/10.5194/acp-14-10483-2014, http://www.atmos-chem-phys.net/14/10483/2014/

    Article  Google Scholar 

  • Rabier F, Järvinen H, Klinker E, Mahfouf JF, Simmons A (2000) The ECMWF operational implementation of four-dimensional variational assimilation. I: experimental results with simplified physics. Q J R Meteorol Soc 126(564):1143–1170

    Article  Google Scholar 

  • Rees MH (1989) Physics and chemistry of the upper atmosphere, vol 1. Cambridge University Press

    Google Scholar 

  • Richmond A, Ridley E, Roble R (1992) A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett 19(6):601–604

    Article  Google Scholar 

  • Ridley A, Deng Y, Toth G (2006) The global ionosphere-thermosphere model. J Atmos Solar Terr Phys 68(8):839–864

    Article  Google Scholar 

  • Rind D (1978) Investigation of the lower thermosphere results of ten years of continuous observations with natural infrasound. J Atmos Terr Phys 40(10–11):1199–1209

    Article  Google Scholar 

  • Rishbeth H, Müller-Wodarg I (1999) Vertical circulation and thermospheric composition: a modelling study. Ann Geophys 17:794–805. Springer

    Google Scholar 

  • Roble R (1983) Dynamics of the earth’s thermosphere. Rev Geophys 21(2):217–233

    Article  Google Scholar 

  • Roble R (2000) On the feasibility of developing a global atmospheric model extending from the ground to the exosphere. Atmos Sci Across Stratopause 53–67

    Google Scholar 

  • Roble R, Ridley E (1994) A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): equinox solar cycle minimum simulations (30–500 km). Geophys Res Lett 21(6):417–420

    Article  Google Scholar 

  • Sabatini R, Bailly C, Marsden O, Gainville O (2016) Characterization of absorption and non-linear effects in infrasound propagation using an augmented burgers’ equation. Geophys J Int 207(3):1432–1445

    Article  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou YT, Hy Chuang, Iredell M et al (2014) The NCEP climate forecast system version 2. J Clim 27(6):2185–2208

    Article  Google Scholar 

  • Saito K, Ishida JI, Aranami K, Hara T, Segawa T, Narita M, Honda Y (2007) Nonhydrostatic atmospheric models and operational development at JMA. J Meteorol Soc Jpn Ser II 85:271–304

    Article  Google Scholar 

  • Sassi F, Liu HL (2014) Westward traveling planetary wave events in the lower thermosphere during solar minimum conditions simulated by SD-WACCM-X. J Atmos Solar Terr Phys 119:11–26

    Article  Google Scholar 

  • Schmidt H, Brasseur G, Charron M, Manzini E, Giorgetta M, Diehl T, Fomichev V, Kinnison D, Marsh D, Walters S (2006) The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and co2 doubling. J Clim 19(16):3903–3931

    Article  Google Scholar 

  • Schunk R, Nagy A (2009) Ionospheres: physics, plasma physics, and chemistry. Cambridge University Press

    Google Scholar 

  • Siskind DE, Drob DP (2014) Use of NOGAPS-ALPHA as a bottom boundary for the NCAR/TIEGCM. Model Ionosphere Thermosphere Syst 171–180

    Google Scholar 

  • Smets P, Evers L, Näsholm S, Gibbons S (2015) Probabilistic infrasound propagation using realistic atmospheric perturbations. Geophys Res Lett 42(15):6510–6517

    Article  Google Scholar 

  • Solomon S, Kinnison D, Bandoro J, Garcia R (2015) Simulation of polar ozone depletion: an update. J Geophys Res Atmos 120(15):7958–7974

    Google Scholar 

  • Stauffer DR, Seaman NL (1990) Use of four-dimensional data assimilation in a limited-area mesoscale model. part I: experiments with synoptic-scale data. Monthly Weather Rev 118(6):1250–1277

    Article  Google Scholar 

  • Suzuki S, Nakamura T, Ejiri MK, Tsutsumi M, Shiokawa K, Kawahara TD (2010) Simultaneous airglow, lidar, and radar measurements of mesospheric gravity waves over japan. J Geophys Res Atmos 115(D24)

    Google Scholar 

  • Toth Z, Kalnay E, Tracton SM, Wobus R, Irwin J (1997) A synoptic evaluation of the NCEP ensemble. Weather Forecast 12(1):140–153

    Article  Google Scholar 

  • Walker KT, Shelby R, Hedlin MA, Groot-Hedlin C, Vernon F (2011) Western us infrasonic catalog: Illuminating infrasonic hot spots with the USArray. J Geophys Res Solid Earth 116(B12)

    Google Scholar 

  • Warner TT (2010) Numerical weather and climate prediction. Cambridge University Press

    Google Scholar 

  • Warner C, McIntyre M (2001) An ultrasimple spectral parameterization for nonorographic gravity waves. J Atmos Sci 58(14):1837–1857

    Article  Google Scholar 

  • Waxler R, Assink J (2019) Propagation modeling through realistic atmosphere and benchmarking. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 509–549

    Google Scholar 

  • Zhang H, Pu Z (2010) Beating the uncertainties: ensemble forecasting and ensemble-based data assimilation in modern numerical weather prediction. Adv Meteorol 2010

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Chief of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Drob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Drob, D. (2019). Meteorology, Climatology, and Upper Atmospheric Composition for Infrasound Propagation Modeling. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_14

Download citation

Publish with us

Policies and ethics