Skip to main content

Non-contact Micro- and Nanowelding

  • Chapter
  • First Online:
Advanced Noncontact Cutting and Joining Technologies

Part of the book series: Mechanical Engineering Series ((MES))

  • 842 Accesses

Abstract

Micro- and nanoscale welding or joining processes are needed in miniaturisation or microsystem fabrication such as microelectromechanical systems (MEMS) and carbon nanotubes (CNTs). The constant strive for miniaturisation that necessitates that products are manufactured smaller and more lighter comes with the challenge of having smaller parts that require to be joined or assembled at a micro- or nanoscale level. The ability to weld at micro- and nanoscale levels is key to the efficient and effective fabrication of miniaturised components and products. This need has necessitated the development of welding processes that have the capability to join these delicate and fragile parts. The conventional joining process could cause heat damage to the welded part because of the large input from such processes. Also, the tools of these conventional welding processes may even be larger than the miniaturised parts that makes them unsuitable in fabrication of parts at micro- and nanoscale levels. Micro- and nanowelding are performed under powerful microscope. In this chapter, non-contact micro- and nanowelding processes are discussed. Two types of these advanced welding processes discussed are the advanced non-contact fusion welding and solid-state welding processes. Laser micro/nanowelding and electron beam micro/nanowelding are the two fusion-state micro/nanowelding processes that are presented in this chapter. For the solid-state micro/nanowelding processes, ultrasonic micro/nanowelding and resistant micro/nanowelding are presented. In micro- and nanowelding processes, the main challenge is the tight operational tolerance that needs to be met and the processing parameters are found to play an important role in achieving the desired results. The focus of this chapter is on the research developments in this field. The working principles, advantages, limitations and areas of application of these welding processes are explained in Chaps. 7 and 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. El Kadiri, Y. Bienvenu, K. Solanki, M.F. Horstemeyer, P.T. Wang, Creep and tensile behaviors of Fe–Cr–Al foils and laser microwelds at high temperature. Mater. Sci. Eng. A 421, 168–181 (2006)

    Article  Google Scholar 

  2. X. Chen, D. Brox, B. Assadsangabi, M. Sultan Mohamed Ali, K. Takahata, A stainless-steel-based implantable pressure sensor chip and its integration by microwelding. Sens. Actuators A 257, 134–144 (2017)

    Article  Google Scholar 

  3. A. Ascari, A. Fortunato, G. Guerrini, E. Liverani, A. Lutey, Long pulse laser micro welding of commercially pure titanium thin sheets. Procedia Eng. 184, 274–283 (2017)

    Article  Google Scholar 

  4. B.-C. Kim, T.-H. Kim, J.-S. Kim, K.-B. Kim, H.-Y. Lee, Investigation on the effect of laser pulse shape during Nd:YAG laser microwelding of thin al sheet by numerical simulation. Metall. Mater. Trans. A 33a, 1449 (2002)

    Article  Google Scholar 

  5. G.S. Zou, Y.D. Huang, A. Pequegnat, X.G. Li, M.I. Khan, Y. Zhou, Crossed-wire laser microwelding of Pt-10 Pct Ir to 316 low-carbon vacuum melted stainless steel: part I. Mechanism of joint formation. Metall. Mater. Trans. A 43a, 1223 (2012)

    Article  Google Scholar 

  6. Y.D. Huang, A. Pequegnat, G.S. Zou, J.C. Feng, M.I. Khan, Y. Zhou, Crossed-wire laser microwelding of Pt-10 Pct Ir to 316 Lvm stainless steel: part Ii. Effect of orientation on joining mechanism. Metall. Mater. Trans. A 43a, 1234 (2012)

    Article  Google Scholar 

  7. W.-S. Chang, S.-J. Na, A study on heat source equations for the prediction of weld shape and thermal deformation in laser microwelding. Metall. Mater. Trans. B. 33a, 757 (2002)

    Article  Google Scholar 

  8. W. Shi, J. Huang, Y. Xie, Y. Li, F. An, Laser micro-welding technology for Cu–Al dissimilar metals and mechanisms of weld defect formation. Int. J. Adv. Manuf. Technol. 93, 4197–4201 (2017)

    Article  Google Scholar 

  9. H.-T. Liao, Z.-W. Chen, A study on fiber laser micro-spot welding of thin stainless steel using response surface methodology and simulated annealing approach. Int. J. Adv. Manuf. Technol. 67, 1015–1025 (2013)

    Article  Google Scholar 

  10. M. Rohde, C. Markert, W. Pfleging, Laser micro-welding of aluminium alloys: experimental studies and numerical modelling. Int. J. Adv. Manuf. Technol. 50, 207–215 (2010)

    Article  Google Scholar 

  11. Y. Yuan, J. Chen, Nano-welding of multi-walled carbon nanotubes on silicon and silica surface by laser irradiation. Nanomaterials 6, 36 (2016). https://doi.org/10.3390/nano6030036

    Article  Google Scholar 

  12. B. Mehlmann, E. Gehlen, A. Olowinsky, A. Gillner, Laser micro welding for ribbon bonding. Phys. Procedia 56, 776–781 (2014)

    Article  Google Scholar 

  13. T. Ussing, L.V. Petersen, C.B. Nielsen, B. Helbo, L. Højslet, Micro laser welding of polymer microstructures using low power laser diodes. Int. J. Adv. Manuf. Technol. 33, 198–205 (2007)

    Article  Google Scholar 

  14. A. Patschger, J. Bliedtner, J.P. Bergmann, Approaches to increase process efficiency in laser micro welding. Phys. Procedia 41, 592–602 (2013)

    Article  Google Scholar 

  15. P. Dong, H. Li, W. Wang, J. Zhou, Microstructural characterization of laser micro-welded Nitinol wires. Mater. Charact. 135, 40–45 (2018)

    Article  Google Scholar 

  16. H. Mostaan, M. Shamanian, S. Hasani, M. Safari, J.A. Szpunar, Nd:Yag laser micro-welding of ultra-thin Feco−V magnetic alloy: Optimization of weld strength. Trans. Nonferrous Met. Soc. China 27, 1735–1746 (2017)

    Article  Google Scholar 

  17. A. Hozoorbakhsh, M.I.S. Ismail, N.B.A. Aziz, A computational analysis of heat transfer and fluid flow in high-speed scanning of laser micro-welding. Int. Commun. Heat Mass Transfer 68, 178–187 (2015)

    Article  Google Scholar 

  18. M. Baruah, S. Bag, Influence of pulsation in thermo-mechanical analysis on laser microwelding of Ti6Al4V alloy. Opt. Laser Technol. 90, 40–51 (2017)

    Article  Google Scholar 

  19. C. Yuhua, M. Yuqing, L. Weiwei, H. Peng, Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints. Opt. Laser Technol. 91, 197–202 (2017)

    Article  Google Scholar 

  20. U. Reisgen, T. Dorfmuller, Developments in micro-electron beam welding. Microsyst. Technol. 14, 1871–1877 (2008)

    Article  Google Scholar 

  21. U. Dilthey, T. Dorfmuller, Micro electron beam welding. Microsyst. Technol. 12, 626–631 (2006)

    Article  Google Scholar 

  22. Q. Yang, S. Bai, G. Wang, J. Bai, Local reconstruction and controllable nanospot welding of multiwalled carbon nanotubes under mild electron beam irradiation. Mater. Lett. 60, 2433–2437 (2006)

    Article  Google Scholar 

  23. G. Smolka, A. Gillner, L. Bosse, R. Lützeler, Micro electron beam welding and laser machining—Potentials of beam welding methods in the micro-system technology. Microsyst. Technol. 10, 187–192 (2004)

    Article  Google Scholar 

  24. W.X. Chan, S.H. Ng, K.H.H. Li, W.-T. Park, Y.-J. Yoon, Micro-ultrasonic welding using thermoplastic-elastomeric compositefilm. J. Mater. Process. Technol. 236, 183–188 (2016)

    Article  Google Scholar 

  25. X. Sánchez-Sánchez, M. Hernández-Avila, L.E. Elizalde, O. Martínez, I. Ferrer, A. Elías-Zuñiga, Micro injection molding processing of UHMWPE using ultrasonic vibration energy. Mater. Design 132, 1–12 (2017)

    Article  Google Scholar 

  26. B. Zhao, Y. Wang, Y. Zhan, Decrease of contact resistance at the interface of carbon nanotube/electrode by nanowelding. Electron. Mater. Lett. 13(2), 168–173 (2017)

    Article  Google Scholar 

  27. K. Mistewicz, M. Nowak, R. Wrzalik, J. Śleziona, J. Wieczorek, A. Guiseppi-Elie, Ultrasonic processing of SbSI nanowires for their application to gas sensors. Ultrasonics 69, 67–73 (2016)

    Article  Google Scholar 

  28. B. Zhao, Y. Wang, C. Liu, L. Zhang, X. Liu, Y. Zhang, Ultrasonic nano welding of SiC microparticles on Al surface. Appl. Surf. Sci. 258, 5786–5789 (2012)

    Article  Google Scholar 

  29. B. Zhao, C. Chen, B. Yadian, P. Liu, Z. Li, X. Dong, Y. Zhang, Effects of welding head on the carbon nanotube field emission in ultrasonic nano welding. Thin Solid Films 517, 2012–2015 (2009)

    Article  Google Scholar 

  30. B. Zhao, G. Jiang, H. Qi, Joining aluminum sheets with conductive ceramic films by ultrasonic nano welding. Ceram. Int. 42, 8098–8101 (2016)

    Article  Google Scholar 

  31. Z. Chen, Joint formation mechanism and strength in resistance microwelding of 316L stainless steel to Pt wire. J. Mater. Sci. 42, 5756–5765 (2007)

    Article  Google Scholar 

  32. S. Fukumoto, Y. Zhou, Mechanism of resistance microwelding of crossed fine nickel wires. Metall. Mater. Trans. A 35, 3165 (2004)

    Article  Google Scholar 

  33. S. Fukumoto, Z. Chen, Y. Zhou, Interfacial phenomena and joint strength in resistance microwelding of crossed Au-plated Ni wires. Metall. Mater. Trans. A 36, 2717 (2005)

    Article  Google Scholar 

  34. M.I. Khan, J.M. Kim, M.L. Kuntz, Y. Zhou, Bonding mechanisms in resistance microwelding of 316 low-carbon vacuum melted stainless steel wires. Metall. Mater. Trans. A 40A, 910–919 (2009)

    Article  Google Scholar 

  35. B. Tam, A. Pequegnat, M.I. Khan, Y. Zhou, Resistance microwelding of Ti-55.8 wt pct Ni Nitinol wires and the effects of pseudoelasticity. Metall. Mater. Trans. A 43, 2969–2978 (2012)

    Article  Google Scholar 

  36. R.M. Mahamood, E.T. Akinlabi, in Chapter 21 - Laser-assisted additive fabrication of micro-sized coatings. Woodhead Publishing Series in Welding and Other Joining Technologies, Advances in Laser Materials Processing, ed by J. Lawrence, Second Edition (Woodhead Publishing, Cambridge, 2018), pp. 635–664

    Chapter  Google Scholar 

  37. G. Zhao, Z. Wei, J. Du, W. Liu, X. Wang, Y. Yao, Additive manufacturing of Sn63Pb37 component by micro-coating. Procedia Eng. 157, 193–199 (2016)

    Article  Google Scholar 

  38. R.M. Mahamood, E.T. Akinlabi, M. Shukla, S. Pityana, Revolutionary additive manufacturing: An overview. Laser Eng. 27, 161–178 (2014)

    Google Scholar 

  39. R.M. Mahamood, E.T. Akinlabi, M. Shukla, S. Pityana, Material efficiency of laser metal deposited Ti6Al4V: Effect of laser power. Eng. Lett. 21(1), EL_21_1_03 (2013.) http://www.engineeringletters.com/issues_v21/issue_1/EL_21_1_03.pdf

    Google Scholar 

  40. R.M. Mahamood, E.T. Akinlabi, Process parameters optimization for material deposition efficiency in laser metal deposited titanium alloy. Lasers Manuf. Mater. Process. 3(1), 9–21 (2016). https://doi.org/10.1007/s40516-015-0020-5

    Article  Google Scholar 

  41. R.M. Mahamood, E.T. Akinlabi, S.A. Akinlabi, Laser power and scanning speed influence on the mechanical property of laser metal deposited titanium-alloy. Lasers Manuf. Mater. Process. 2(1), 43–55 (2015)

    Article  Google Scholar 

  42. S. Pityana, R.M. Mahamood, E.T. Akinlabi, M. Shukla, Effect of gas flow rate and powder flow rate on properties of laser metal deposited Ti6Al4V. 2013 International Multi-conference of Engineering and Computer Science (IMECS 2013), 2013, pp. 848–851

    Google Scholar 

  43. R.M. Mahamood, E.T. Akinlabi, Effect of processing parameters on wear resistance property of laser material deposited titanium-alloy composite. J. Optoelectron. Adv. Mater. 17(9–10), 1348–1360 (2015)

    Google Scholar 

  44. R.M. Mahamood, E.T. Akinlabi, Effect of laser power on surface finish during laser metal deposition process. WCECS 2, 965–969 (2014)

    Google Scholar 

  45. M. Shukla, R.M. Mahamood, E.T. Akinlabi, S. Pityana, Effect of laser power and powder flow rate on properties of laser metal deposited Ti6Al4V. World Acad. Sci. Technol. 6, 44–48 (2012)

    Google Scholar 

  46. R.M. Mahamood, E.T. Akinlabi, M.G. Gbadebo, Laser metal deposition process for product remanufacturing, In Advanced Manufacturing Technologies Modern Machining, Advanced Joining, Sustainable Manufacturing, ed. by G. Kapil (Springer, Cham, 2017). pp. 267–291

    Google Scholar 

  47. R.M. Mahamood, E.T. Akinlabi, M. Shukla, S. Pityana, Scanning velocity influence on microstructure, microhardness and wear resistance performance on laser deposited Ti6Al4V/TiC composite. Mater. Des. 50, 656–666 (2013)

    Article  Google Scholar 

  48. M.R. Mahamood, Laser Metal Deposition Process of Metals, Alloys, and Composite Materials (Springer, Cham, 2017)

    Google Scholar 

  49. M.R. Mahamood, E.T. Akinlabi, Functionally Graded Materials (Springer Science Publisher, Cham, 2017)

    Book  Google Scholar 

  50. R.M. Mahamood, E.T. Akinlabi, Achieving mass customization through additive manufacturing, in Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future, ed. by C. Schlick, S. Trzcieliński, (Springer International Publishing, Cham, 2016), pp. 385–390

    Chapter  Google Scholar 

  51. M. Vaezi, H. Seitz, S. Yang, A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 67, 1721–1754 (2013)

    Article  Google Scholar 

  52. M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons 60(5), 677–688 (2017)

    Article  Google Scholar 

  53. S. Singh, S. Ramakrishna, Biomedical applications of additive manufacturing: Present and future. Curr. Opin. Biomed. Eng. 2, 105–115 (2017)

    Article  Google Scholar 

  54. S. Bose, D. Ke, H. Sahasrabudhe, A. Bandyopadhyay, Additive manufacturing of biomaterials. Prog. Mater. Sci. 93, 45–111 (2018)

    Article  Google Scholar 

  55. E. T. Akinlabi, M. R. Mahamood, S. A. Akinlabi (eds.), Advanced Manufacturing Using Laser Material Processing (IGI Global, Hershey, PA, 2016)

    Google Scholar 

  56. R.M. Mahamood, E.T. Akinlabi, Laser additive manufacturing, in Advanced Manufacturing Using Laser Material Processing, ed. by E. T. Akinlabi, M. R. Mahamood, S. A. Akinlabi, (IGI Global, Hershey, PA, 2016), pp. 1–23

    Google Scholar 

  57. R.M. Mahamood, Laser metal deposition process, in Advanced Manufacturing Using Laser Material Processing, ed. by E. T. Akinlabi, M. R. Mahamood, S. A. Akinlabi, (IGI Global, Hershey, PA, 2016), pp. 46–59

    Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Johannesburg research council (URC) fund and University of Ilorin.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahamood, R.M., Akinlabi, E.T. (2018). Non-contact Micro- and Nanowelding. In: Advanced Noncontact Cutting and Joining Technologies. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-75118-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75118-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75117-7

  • Online ISBN: 978-3-319-75118-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics