Skip to main content

Advanced Mechanical Cutting Process

  • Chapter
  • First Online:
Advanced Noncontact Cutting and Joining Technologies

Part of the book series: Mechanical Engineering Series ((MES))

  • 884 Accesses

Abstract

The need of advanced materials required in the modern-day technology and the demand of miniaturisation from different kinds of engineering applications have led to the development of cutting processes that are able to offset the limitations encountered in the conventional manufacturing processes. Advanced mechanical cutting processes such as waterjet machining, abrasive waterjet machining and ultrasonic machining are important advanced machining processes that are contactless and tool-less processes used to cut advanced materials and in micromachining where the conventional machining process becomes prohibitive. These advanced mechanical cutting processes are analysed in this chapter. The working principles of these cutting processes are described with the advantages, disadvantages and areas of application presented. Some of the research works in this field are also presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Boud, L.F. Loo, P.K. Kinnell, The impact of plain waterjet machining on the surface integrity of aluminium 7475. Procedia CIRP 13, 382–386 (2014)

    Article  Google Scholar 

  2. D.A. Axinte, D.S. Srinivasu, M.C. Kong, P.W. Butler-Smith, Abrasive waterjet cutting of polycrystalline diamond: A preliminary investigation. Int. J. Mach. Tools Manuf. 49(10), 797–803 (2009)

    Article  Google Scholar 

  3. J. Schwartzentruber, M. Papini, Abrasive waterjet micro-piercing of borosilicate glass. J. Mater. Process. Technol. 219, 143–154 (2015)

    Article  Google Scholar 

  4. J. Wang, K. Shimada, M. Mizutani, T. Kuriyagawa, Effects of abrasive material and particle shape on machining performance in micro ultrasonic machining. Precis. Eng. 51, 373–387 (2018). https://doi.org/10.1016/j.precisioneng.2017.09.008

    Article  Google Scholar 

  5. A. Kumar, S.S. Hiremath, Improvement of geometrical accuracy of micro holes machined through micro abrasive jet machining. Procedia CIRP 46, 47–50 (2016)

    Article  Google Scholar 

  6. M.C. Kong, D. Axinte, W. Voice, Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide. J. Mater. Process. Technol. 210, 573–584 (2010)

    Article  Google Scholar 

  7. D.S. Srinivasu, D.A. Axinte, Surface integrity analysis of plain waterjet milled advanced engineering composite materials. Procedia CIRP 13, 371–376 (2014)

    Article  Google Scholar 

  8. M.C. Kong, D. Axintea, W. Voice, Challenges in using waterjet machining of NiTi shape memory alloys: An analysis of controlled-depth milling. J. Mater. Process. Technol. 211, 959–971 (2011)

    Article  Google Scholar 

  9. G. Aydin, S. Kaya, I. Karakurt, Utilization of solid-cutting waste of granite as an alternative abrasive in abrasive waterjet cutting of marble. J. Clean. Prod. 159, 241–247 (2017)

    Article  Google Scholar 

  10. J. Schwartzentruber, J.K. Spelt, M. Papini, Prediction of surface roughness in abrasive waterjet trimming of fiber reinforced polymer composites. Int. J. Mach. Tools Manuf. 122, 1–17 (2017)

    Article  Google Scholar 

  11. M. Mieszala, P. Lozano Torrubia, D.A. Axinte, J.J. Schwiedrzik, Y. Guo, S. Mischler, J. Michler, L. Philippe, Erosion mechanisms during abrasive waterjet machining: Model microstructures and single particle experiments. J Mater. Process. Tech. 247, 92–102 (2017)

    Article  Google Scholar 

  12. L. Huang, J. Folkes, P. Kinnell, P.H. Shipway, Mechanisms of damage initiation in a titanium alloy subjected to water droplet impact during ultra-high pressure plain waterjet erosion. J. Mater. Process. Technol. 212(9), 1906–1915 (2012)

    Article  Google Scholar 

  13. P. Lozano Torrubia, D. Axinte, J. Billingham, Stochastic modelling of abrasive waterjet footprints using finite element analysis. Int. J. Mach. Tools Manuf. 95, 39–51 (2015)

    Article  Google Scholar 

  14. J. Billingham, C.B. Miron, D.A. Axinte, M.C. Kong, Mathematical modelling of abrasive waterjet footprints for arbitrarily moving jets. Part II. Overlapped single and multiple straight paths. Int. J. Mach. Tools Manuf. 68, 30–39 (2013)

    Article  Google Scholar 

  15. S. Anwar, D.A. Axinte, A.A. Becker, Finite element modelling of overlapping abrasive waterjet milled footprints. Wear 303(1–2), 426–436 (2013)

    Article  Google Scholar 

  16. U. Çaydaş, A. Hasçalık, A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. J. Mater. Process. Technol. 202(1–3), 574–582 (2008)

    Article  Google Scholar 

  17. P. Hlaváček, J. Valíček, S. Hloch, M. Greger, J. Foldyna, Ž. Ivandić, L. Sitek, M. Kušnerová, M. Zeleńák, Measurement of fine grain copper surface texture created by abrasive water jet cutting. Strojarstvo: časopis za teoriju i praksu u strojarstvu 51(4), 273–279 (2009)

    Google Scholar 

  18. R. Balz, R. Mokso, C. Narayanan, D.A. Weiss, K.C. Heiniger, Ultra-fast X-ray particle velocimetry measurements within an abrasive water jet. Exp. Fluids 54(3), 1476 (2013)

    Article  Google Scholar 

  19. K. Nagendra Prasad, D. John Basha, K.C. Varaprasad, Experimental investigation and analysis of process parameters in abrasive jet machining of Ti-6Al-4V alloy using Taguchi method. Mater. Today: Proc. 4, 10894–10903 (2017)

    Article  Google Scholar 

  20. D.V. Srikanth, M. Sreenivasa Rao, Application of Taguchi & response surface methodology in optimization for machining of ceramics with abrasive jet machining. Mater. Today: Proc. 2, 3308–3317 (2015)

    Article  Google Scholar 

  21. N. Shafiei, H. Getu, A. Sadeghian, M. Papini, Computer simulation of developing abrasive jet machined profiles including particle interference. J. Mater. Process. Technol. 209, 4366–4378 (2009)

    Article  Google Scholar 

  22. D.V. Srikantha, M.S. Rao, Metal removal and kerf analysis in abrasive jet drilling of glass sheets. Procedia Mater. Sci. 6, 1303–1311 (2014)

    Article  Google Scholar 

  23. M. Wakuda, Y. Yamauchi, S. Kanzaki, Effect of workpiece properties on machinability in abrasive jet machining of ceramic materials. J. Int. Soc. Precis. Eng. Nanotechnol. 26, 193–198 (2002)

    Google Scholar 

  24. L. Zhang, T. Kuriyagawa, Y. Yasutomi, Z. Ji, Investigation into micro abrasive intermittent jet machining. Int J Mach Tool Manu 45, 873–879 (2005)

    Article  Google Scholar 

  25. R. Balasubramaniam, J. Krishnan, N. Ramakrishnan, A study on the shape of the surface generated by abrasive jet machining. J. Mater. Process. Technol. 121, 102–106 (2002)

    Article  Google Scholar 

  26. N.S. Pawar, R.R. Lakhe, R.L. Shrivastava, Validation of experimental work by using cubic polynomial models for sea sand as an abrasive material in silicon nozzle in abrasive jet machining process. Mater. Today: Proc. 2, 1927–1933 (2015)

    Article  Google Scholar 

  27. A. Nouhi, K. Kowsari, J.K. Spelt, M. Papini, Abrasive jet machining of channels on highly-curved glass and PMMA surfaces. Wear 356–357, 30–39 (2016)

    Article  Google Scholar 

  28. J.-H. Ke, F.-C. Tsai, J.-C. Hung, B.-H. Yan, Characteristics study of flexible magnetic abrasive in abrasive jet machining. Procedia CIRP 1, 679–680 (2012)

    Article  Google Scholar 

  29. A.G. Gradeen, J.K. Spelt, M. Papini, Cryogenic abrasive jet machining of polydimethylsiloxane at different temperatures. Wear 274–275, 335–344 (2012)

    Article  Google Scholar 

  30. A. Kumar, S.S. Hiremath, Machining of micro-holes on Sodalime glass using developed micro-abrasive jet machine (μ-AJM). Procedia Technol. 25, 1234–1241 (2016)

    Article  Google Scholar 

  31. M.R. Sookhak Lari, A. Ghazavi, M. Papini, A rotating mask system for sculpting of three-dimensional features using abrasive jet micro-machining. J. Mater. Process. Technol. 243, 62–74 (2017)

    Article  Google Scholar 

  32. R. Haj Mohammad Jafar, H. Nouraei, M. Emamifar, M. Papini, J.K. Spelt, Erosion modeling in abrasive slurry jet micro-machining of brittle materials. J. Manuf. Process. 17, 127–140 (2015)

    Article  Google Scholar 

  33. S. Ally, J.K. Spelt, M. Papini, Prediction of machined surface evolution in the abrasive jet micro-machining of metals. Wear 292–293, 89–99 (2012)

    Article  Google Scholar 

  34. M. Fan, C.Y. Wang, J. Wang, Modelling the erosion rate in micro abrasive air jet machining of glasses. Wear 266(9–10), 968–974 (2009)

    Article  Google Scholar 

  35. D. Lv, H. Wang, Y. Tang, Y. Huang, Z. Li, Influences of vibration on surface formation in rotary ultrasonic machining of glass BK7. Precis. Eng. 37, 839–848 (2013)

    Article  Google Scholar 

  36. F. Feucht, J. Ketelaer, A. Wolff, M. Mori, M. Fujishima, Latest machining technologies of hard-to-cut materials by ultrasonic machine tool. Procedia CIRP 14, 148–152 (2014)

    Article  Google Scholar 

  37. D. Goswami, S. Chakraborty, Parametric optimization of ultrasonic machining process using gravitational search and fireworks algorithms. Ain Shams Eng. J. 6, 315–331 (2015)

    Article  Google Scholar 

  38. W.L. Cong, Z.J. Pei, X. Sun, C.L. Zhang, Rotary ultrasonic machining of CFRP: A mechanistic predictive model for cutting force. Ultrasonics 54, 663–675 (2014)

    Article  Google Scholar 

  39. J. Wang, K. Shimada, M. Mizutani, T. Kuriyagawa, Tool wear mechanism and its relation to material removal in ultrasonic machining. Wear 394–395, 96–108 (2018)

    Article  Google Scholar 

  40. J. Wang, J. Zhang, P. Feng, Effects of tool vibration on fiber fracture in rotary ultrasonic machining of C/SiC ceramic matrix composites. Compos. Part B 129, 233–242 (2017)

    Article  Google Scholar 

  41. J. Wang, J. Zhang, P. Feng, P. Guo, Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: A critical review. Ceram. Int. 44(2), 1227–1239 (2018)

    Article  Google Scholar 

  42. R. Singh, J.S. Khamba, Ultrasonic machining of titanium and its alloys: A review. J. Mater. Process. Technol. 173(2), 125–135 (2006)

    Article  Google Scholar 

  43. N. Chandra, G.C. Lim, H.Y. Zheng, Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics. Ultrasonics 52(5), 605–613 (2012)

    Article  Google Scholar 

  44. L. DeFu, W.L. Cong, Z.J. Pei, Y.J. Tang, A cutting force model for rotary ultrasonic machining of brittle materials. Int. J. Mach. Tools Manuf. 52(1), 77–84 (2012)

    Article  Google Scholar 

  45. F. Ning, H. Wang, W. Cong, P.K.S.C. Fernando, A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites. Ultrasonics 76, 44–51 (2017)

    Article  Google Scholar 

  46. J. Wang, P. Feng, J. Zhang, W. Cai, H. Shen, Investigations on the critical feed rate guaranteeing the effectiveness of rotary ultrasonic machining. Ultrasonics 74, 81–88 (2017)

    Article  Google Scholar 

  47. Z. Li, S. Yuan, C. Zhang, Research on the rotary ultrasonic facing milling of ceramic matrix composites. Procedia CIRP 56, 428–433 (2016)

    Article  Google Scholar 

  48. S. Agarwal, On the mechanism and mechanics of material removal in ultrasonic machining. Int. J. Mach. Tools Manuf. 96, 1–14 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Johannesburg research council (URC) and University of Ilorin.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahamood, R.M., Akinlabi, E.T. (2018). Advanced Mechanical Cutting Process. In: Advanced Noncontact Cutting and Joining Technologies. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-75118-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75118-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75117-7

  • Online ISBN: 978-3-319-75118-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics