Skip to main content

Environmental Isotopes in Groundwater Applications

  • Chapter
  • First Online:
Groundwater Development and Management
  • 1099 Accesses

Abstract

The total amount of water on this earth is virtually constant but its distribution over time and space varies largely. Wherever people live, they must get a clean and continuous water supply as a primary requirement. The assessment of quality, supply and renewal of resources of water is a well known problem, but it is becoming critical with the growth of population and rapid industrialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aller, L., Bennett, T., Lehr, J.H. and Petty, R.J. (1985). DRASTIC – A standardized system for evaluating ground water pollution potential using hydrogeologic settings, US EPA. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, EPA/600/2-85/018, 163 p.

    Google Scholar 

  • Amberger, A. and Schmidt, H.L. (1987). Natürliche isotopengehalte von Nitrate als Indikatoren für dessen Herkunft. Geochim Cosmochim Acta, 51: 2699–2705.

    Article  Google Scholar 

  • Andersen, L.J. and Sevel, T. (1974). Six years’ environmental tritium profiles in the unsaturated and saturated zones, Gronhoj, Denmark. Proc. IAEA Symp. Isotope Techniques in Groundwater Hydrology, 9–13 March, Vienna, 3–20.

    Google Scholar 

  • Bahadur, J., Saxena, R.K. and Mookerjee, P. (1977). Soil moisture movement and groundwater recharge by tritium tracer tagging technique. Proc Ind Acad Sc, Ser. A 85: 462–471.

    Google Scholar 

  • Bethke, CM, Johnson TM (2002). Ground water age. Ground Water, 40(4): 337–339.

    Article  Google Scholar 

  • Bigeleisen, J. (1965). Chemistry of isotopes. Science, 147(3657): 463–471.

    Article  Google Scholar 

  • Blume, H.P., Zimmerman, U. and Munnich, K.O. (1967). Tritium tagging of soil moisture: The water balance of forest soils. In: Proc. Symp. Isotope and Radiation Techniques in Soil Physics and Irrigation Studies (Istanbul): 315–332. IAEA, Vienna.

    Google Scholar 

  • Boronina, A., Renard, P., Balderer, W. and Stichler, W. (2005). Application of tritium in precipitation and in groundwater of the Kouris catchment (Cyprus) for description of the regional groundwater flow. Applied Geochemistry, 20: 1292–1308.

    Article  Google Scholar 

  • Böttcher, J., Strebel, O., Voerkelius, S. and Schmidt, H.L. (1990). Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J. Hydrol., 114: 413–424.

    Article  Google Scholar 

  • Bowen, R. (1985). Hydrogeology of the Bist Doab and adjacent areas, Punjab, India. Nord. Hydrol, 16(1): 33–44.

    Article  Google Scholar 

  • Bu, X. and Warner, M.J. (1995). Solubility of chlorofluorocarbon 113 in water and sea-water. Deep-sea Research, 42: 1151–1161.

    Article  Google Scholar 

  • Busenberg, E. and Plummer, L.N. (1996). Concentrations of chlorofluorocarbons and other gases in ground water at Mirror Lake, New Hampshire. In: Morganwalp, D.W. and Aronson, D.A. (eds). USGS Toxic substances hydrology program. Proc. of the Technical Meeting, Colorado Springs, Colorado, September 20–24, 1993: USGS WRIR 94-4014, 151–158.

    Google Scholar 

  • Chapelle, F.H., Zelibor, J.L., Grimes, D.J. and Knobel, L.L. (1987). Bacteria in deep coastal plain sediments of Maryland: A possible source of CO2 to ground water. Water Resour. Res., 23: 1625–1632.

    Article  Google Scholar 

  • Chesnaux, R., Molson, J.W. and Chapuis, R.P. (2005). An analytical solution for ground-water transit time through unconfined aquifers. Ground Water, 43: 511–517.

    Article  Google Scholar 

  • Clark, I. and Fritz, P. (1997). Environmental Isotopes in Hydrogeology. Lewis Publishers, New York.

    Google Scholar 

  • Cook, P.G. and Herczeg, A.L. (1998). Groundwater chemical methods for recharge studies. Part 2 of the Basics of Recharge and Discharge (Ed. L. Zhang). CSIRO Publishing, CSIRO Australia.

    Google Scholar 

  • Cook, P.G. and Solomon, D.K. (1995). Transport of atmospheric trace gases to the water table: Implications for groundwater with chlorofluorocarbons and dating krypton 85. Water Resources Research, 31: doi: https://doi.org/10.1029/94WR02232.

  • Cornaton, F. and Perrochet, P. (2005). Groundwater age, life expectancy and transittime distributions in advective-dispersive systems; 1. Generalized Reservoir Theory. Advances in Water Resources 29(9): 1267–1291.

    Google Scholar 

  • Craig, H. (1961). Isotopic Variations in Meteoric Waters. Science, 133: 1702–1703. https://doi.org/10.1126/science.133.3465.1702.

    Article  Google Scholar 

  • Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16: 436–468.

    Article  Google Scholar 

  • Dörr, H., Schlosser, P., Stute, M. and Sonntag, C. (1992). Tritium and 3He measurements as Calibration data for groundwater transport models. In: Progress in Hydrogeo-chemistry. Mattess et al. (eds.). Springer, Berlin, 461–466.

    Google Scholar 

  • Emiliani, C. (1966). Isotopic Paleotemperature. Science, 154(3751): 851–857.

    Article  Google Scholar 

  • Epstein, S., Buchsbaum, R., Lowenstam, H. and Urey, H.C. (1953). Revised carbonate-water isotopic temperature scale. Bull. GSA, 64: 1315–1326.

    Article  Google Scholar 

  • Etcheverry, D. and Perrochet, P. (2000). Direct simulations of groundwater transit-time distributions using the reservoir theory. Adv. Water Res., 8: 200–208, doi:https://doi.org/10.1007/s100400050006.

    Article  Google Scholar 

  • Fehn, U., Snyder, G.T., Matsumoto, R., Muramatsu, Y. and Tomaru, H. (2003). Iodine dating of pore waters associated with gas hydrates in the Nankai area, Japan. Geology, 31: 521–524.

    Article  Google Scholar 

  • Forstel, H. (1982). 18O/16O-ratio of water in plants and in their environment. In: Stable Isotopes. H-L Schmidt, H. Forstel and K. Heizinger (Eds). Pp. 503–509. Elsevier Scientific Publishing Co, Amsterdam.

    Google Scholar 

  • Freeze, R.A. and Cherry, J.A. (1979). Groundwater. Prentice Hall, Englewood Cliffs, p. 604.

    Google Scholar 

  • Gleick, P.H. (ed.) (1993). Water in Crisis: A Guide to the World’s Fresh Water Resources. Oxford University Press, New York.

    Google Scholar 

  • Gonfiantini, R., W. Stichler, and K. Rozanski (1995), Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements, IAEA-TECDOC-825, Int. At. Energy Agency, Vienna.

    Google Scholar 

  • Goode, D.J. (1996). Direct Simulation of groundwater age. Water Resources Research, 32(2): 289–296.

    Article  Google Scholar 

  • Hanshaw, B.B. and Back, W. (1974). Determination of regional hydraulic conductivity through 14C dating of groundwater. Memoirs of the Intl. Association of Hydrogeologists, 10: 195–196.

    Google Scholar 

  • Harvey, C.F. and Gorelick, S.M. (1995). Temporal moment-generating equations: Modeling transport and mass transfer in heterogeneous aquifers. Water Resources Research, 31: doi: https://doi.org/10.1029/95WR01231. ISSN: 0043-1397.

  • Krouse, H.R. (1980). Sulphur isotopes in our environment. In: Fritz, P. and Fontes, J. Ch. (Eds). Isotope Geochemistry, Vol. 1. The Terrestrial Environment. Elsevier, Amsterdam. 435–471.

    Google Scholar 

  • Kumar, B. and Nachiappan, Rm. P. (1995). A mathematical approach based on tritium tagging technique to evaluate recharge to groundwater due to monsoon rains. Tracer Technologies for Hydological System. IAHS Publ. No. 229.

    Google Scholar 

  • Kumar, R., Suresh, N., Sangode, S.J. and Kumaravel, V. (2007). Evolution of the Quaternary alluvial fan system in the Himalayan foreland basin: Implications for tectonic and climatic decoupling. Quat. Int., 159(1): 6–20.

    Article  Google Scholar 

  • Kumar, B., Rao, M.S., Navada, S.V., Verma, S.K. and Shrivastava, S. (2009). Evaluation of effectiveness of artificial recharge measures in parts of Maharashtra using environmental isotopes. Current Science, 97(9): 1321–1330.

    Google Scholar 

  • Kumar, Sudhir, Mishra, K. and Kumar, B. (2012). Surface and ground water interaction at selected locations along the river Yamuna, NCT Delhi. Proc. of National Symposium on “Water Resources Management in Changing Environment (WARMICE-2012)”, NIH Roorkee, Feb. 8–9, 2012.

    Google Scholar 

  • Lapworth, D.J., MacDonald, A.M., Krishan, G., Rao, M.S., Gooddy, D.C. and Darling, W.G. (2015). Groundwater recharge and age-depth profiles of intensively exploited groundwater resources in northwest India. Geophys. Res. Lett., 42: 7554–7562, doi:https://doi.org/10.1002/2015GL065798.

    Article  Google Scholar 

  • Létolle, R. (1980). Nitrogen-15 in the natural environment. In: Handbook of Environmental Isotope Geochemistry. 1. The Terrestrial Environment. P. Fritz and J.C. Fontes (eds). Elsevier, Amsterdam, The Netherlands. 407–433.

    Google Scholar 

  • Mazor, E., and Nativ, R. (1992) Hydraulic calculation of groundwater flow velocity andage: Examination of the basic premises. J. Hydrol., 138:211–222.

    Article  Google Scholar 

  • McCrea, J.M. (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys., 18: 849–857.

    Article  Google Scholar 

  • Metcalfe, R., Hooker, P.J., Darling, W.G. and Milodovski, A.E. (1998). Dating Quaternary groundwater flow events: A review of available methods and their application. In: Parnell, J. (ed.), Dating and Duration of Fluid Flow and Fluid-Rock Interaction. Geological Society, London. Special publications, No. 144: 233–260.

    Google Scholar 

  • Modica, E., Buxton, H.T. and Plummer, L.N. (1998). Evaluating the source and residence times of groundwater seepage to streams, New Jersey Coastal Plain. WRR, 34: 2797–2810.

    Article  Google Scholar 

  • Munnich, K.O. (1968a). Moisture movement measured by isotope tagging. In: Guide book on nuclear techniques in hydrology. IAEA, Vienna, 112–117.

    Google Scholar 

  • Munnich, K.O. (1968b). Use of nuclear techniques for the determination of groundwater recharge rates. In: Guide book on nuclear techniques in hydrology. IAEA, Vienna, 191–197.

    Google Scholar 

  • Munnich, K.O., Roether, W. and Thilo, L. (1967). Dating of groundwater with tritium and C-14. Proc. IAEA Symp. Isotopes in Hydrology, 14–18 Nov. 1966, Veinna. pp. 305–319.

    Google Scholar 

  • Nachiappan, Rm. P., Rao, M.S., Kumar, B., Navada, S.V. and Satyanarayana, P. (2003). Chemical and isotopic techniques for the development of groundwater management strategies in a coastal aquifer, Krishna River Delta, South India. International Symposium on Isotope Hydrology and Integrated Water Resources Management organized by IAEA, Vienna, Austria, 19–23 May, 2003.

    Google Scholar 

  • NIH (1999). Study of soil moisture movement and recharge to groundwater due to monsoon rains and irrigation using tritium tagging technique in Hardwar district. National Institute of Hydrology, Roorkee. Report No. TR/BR-14/98-99.

    Google Scholar 

  • NIH (2000). Study of soil moisture movement and recharge to ground water due to monsoon rains and irrigation using tritium-tagging technique in Saharanpur district. National Institute of Hydrology, Roorkee. Report No. CS/AR-23/1999-2000.

    Google Scholar 

  • Nier, A.O. (1950). A Redetermination of the Relative Abundances of the Isotopes of Carbon, Nitrogen, Oxygen, Argon and Potassium. Phys. Rev., 77: 789.

    Article  Google Scholar 

  • Ozima, M. and Podosek, F. (2001). Noble Gas Geochemistry. Second edition. Cambridge University Press, Cambridge. 286 p.

    Book  Google Scholar 

  • Payne, B.R. (1988). The status of isotope hydrology today. J Hydrol, 100: 207–237.

    Article  Google Scholar 

  • Phillips, F.M. (2000). Chlorine-36. In: Cook, P. and Herczeg, A. (eds). Environmental Tracers in Subsurface Hydrology. Kluwer Academic Publishers, Boston. 299–348.

    Chapter  Google Scholar 

  • Phillips, F.M., Tansey, M.K., Peeters, L.A., Cheng, S. and Long, A. (1989). An isotopic investigation of groundwater in the central San Juan basin, New Mexico: 14C dating as a basis for numerical flow modeling. Water Resources Research, 25: doi: https://doi.org/10.1029/89WR01275. ISSN: 0043-1397.

  • Plummer, L.N., Busby, J.F., Lee, R.W. and Hanshaw, B.B. (1990). Geochemical modelling of the Madison aquifer in parts of Montana, Wyoming and South Dakota. Water Resources Research, 26: 1981–2014.

    Article  Google Scholar 

  • Rai, S.P., Kumar, Sudhir, Kumar, Bhishm and Rawat, Y.S. (2012). Identification of Source of Leakage in Drainage Gallery of Tehri Dam using Isotopic Techniques. Hydrology J, 35(3&4): 63–75.

    Google Scholar 

  • Robertson, W.D., Cherry, J.A. and Schiff, S.L. (1989). Atmospheric sulfur deposition 1950–1985 inferred from sulfate in groundwater. Water Resources Research, 25: doi: https://doi.org/10.1029/89WR00133. ISSN: 0043-1397.

  • Rozanski, K., Araguás-Araguás, L. and Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. American Geophysical Union, Washington DC, 78: 7–6. doi: https://doi.org/10.1029/GM078p0001.

    Article  Google Scholar 

  • Samadder, R.K., Kumar, S. and Gupta, R.P. (2011). Paleochannels and their potential for artificial groundwater recharge in the western Gangaplains. J Hydrol, 400(1): 154–164.

    Article  Google Scholar 

  • Saxena, R.K. (1984). Seasonal variations of oxygen-18 in soil moisture and estimation of recharge in esker and moraine formations. Nordic Hydrology, 15: 235–242.

    Article  Google Scholar 

  • Shivanna, K., Tirumalesh, K., Noble, J., Joseph, T.B., Singh, G., Joshi, A.P. and Khati, V.S. (2008). Isotope techniques to identify recharge areas of springs for rainwater harvesting in the mountainous region of Gaucher area, Chamoli District, Uttarakhand. Current Science, 94(8): 1003–1011.

    Google Scholar 

  • Solomon, D.K., Schiff, S.L., Poreda, R.J. and Clarke, W.B. (1993). A validation of the 3H/3He method for determining groundwater recharge. WRR, 29: 2951–2962.

    Article  Google Scholar 

  • Singh, A., Gupta, S., Sinha, R., Carter, A., Thomsen, K.J., Mark, D.F., Buylaert, J.P., Mason, P.J., Murray, A.S., Jain, M. and Debajyoti, P. (2015). Large-scale avulsion of the late Quaternary Sutlej river in the NW Indo-Gangetic foreland basin. In: EGU General Assembly Conference Abstracts, 17: 6661.

    Google Scholar 

  • Sinha, R., Yadav, G.S., Gupta, S., Singh, A. and Lahiri, S.K. (2013). Geo-electric resistivity evidence for subsurface palaeochannel systems adjacent to Harappan sites in northwest India. Quat. Int., 308: 66–75.

    Article  Google Scholar 

  • Sukhija, B.S. and Shah, C.R. (1976). Conformity of groundwater recharge rate by tritium method and mathematical modelling. J Hydrol, 30: 167–178.

    Article  Google Scholar 

  • Thoma, G., Esser, N., Sonntag, C., Weiss, W. and Rudolph, J. (1979). New technique of in-situ soil moisture sampling for environmental isotope analysis applied at Pilat sand dune near Bordeaux. Proc. Symp. Isotope Hydrology, 19–23 June, 1978, Neuherberg, IAEA, Vienna. pp. 753–768.

    Google Scholar 

  • Thompson, G.M. and Hayes, J.M. (1979). Trichlorofluoromethane in groundwater – A possible tracer and indicator of groundwater age. Water Resour. Res., 15: 546–554.

    Article  Google Scholar 

  • Urey, H.C., Brickwedde, F.G. and Murphy, G.M. (1932). A hydrogen isotope of mass 2 and its concentration. Physical Review, 40: 1–15.

    Article  Google Scholar 

  • Varni, M. and Carrera, J. (1998). Simulation of groundwater age distributions. Water Resources Research, 34: doi: https://doi.org/10.1029/98WR02536. ISSN: 0043-1397.

  • Warner, M.J. and Weiss, R.F. (1985). Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep Sea Research, 32: 1485–1497.

    Article  Google Scholar 

  • Weise, S.M., Stichler, W. and Bertleff, B. (2001). Groundwater inflows into an excavated artificial lake (gravel pit) indicated by apparent 3H/3He ages. In: Seiler, K.P. and Wohnlich, S. (eds.) Proc. XXXI IAH Congress “New Approaches Characterizing Groundwater Flow”, Swets and Zeitlinger Lisse, Munich. 225–228.

    Google Scholar 

  • Wieser, M., Aeschbach-Hertig, W., Schneider, T., Deshpande, R.D. and Gupta, S.K. (2011). A temperature and monsoon record derived from environmental tracers in the groundwater of northwest India. In: Proceedings of IAEA International Symposium on Isotopes in Hydrology.

    Google Scholar 

  • Wilson, R. and Mackay, D.M. (1993). The use of sulfur hexafluoride as a conservative tracer in saturated sandy media. Ground Water, 31(5): 719–724.

    Article  Google Scholar 

  • Yurtsever, Y. and Gat, J.R. (1981). Atmospheric waters. In: Gat, J.R. and Gonfiantini, R. (eds). Stable Isotope Hydrology: Deuterium and oxygen-18 in the water cycle. IAEA Tech Rep Ser 210: 103–142.

    Google Scholar 

  • Zimmermann, U., Ehhalt, D. and Munnich, K.O. (1967a). Soil water movement and evapotranspiration; changes in the isotopic composition of the water. In: Isotopes in Hydrology, IAEA, Vienna. pp. 567–584.

    Google Scholar 

  • Zimmermann, U., Munnich, K.O. and Roether, W. (1967b). Downward movement of soil moisture traced by mean of hydrogen isotope. In: Geophysical Monograph No. 11. Isotope Techniques in the Hydrological Cycle. Stout, G.E. (ed.). Amer. Geophys. Union. Washington. pp. 28–36.

    Google Scholar 

  • Zoellmann, K., Kinzelbach, W. and Fulda, C. (2001). Environmental tracer transport (3H and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J Hydrol, 240: 187–205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S. (2019). Environmental Isotopes in Groundwater Applications. In: Sikdar, P. (eds) Groundwater Development and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-75115-3_4

Download citation

Publish with us

Policies and ethics