Skip to main content

Anatomy and Physiology of Skeletal Tissue: The Bone Cells

  • Chapter
  • First Online:
Book cover Multidisciplinary Approach to Osteoporosis

Abstract

The human skeleton, consisting of several hundreds of bones, is no longer believed as a static structural system protecting all soft tissues, but it is now thought as a highly dynamic system. In addition to its roles in locomotion, storage of minerals, and production of blood cells, the skeleton has recently been considered as a new endocrine organ, not only able in its regulation but also involved in the regulation of other organs, and, importantly, it plays a crucial role in the cross talk with the immune system and the skeletal muscle. Bone tissue is a metabolically active organ undergoing continuous remodeling through the balanced activity of osteoclasts, the bone-resorbing cells, and osteoblasts, the bone-forming cells, both orchestrated by the osteocytes, the most abundant cells embedded into the bone matrix. Here, we will provide an overview of the cytokines involved in the recent mechanisms highlighting bone cell differentiation and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cappariello A, Ponzetti M, Rucci N. The “soft” side of the bone: unveiling its endocrine functions. Horm Mol Biol Clin Invest. 2016;28(1):5–20. https://doi.org/10.1515/hmbci-2016-0009.

    Article  CAS  Google Scholar 

  2. Novack DV, Mbalaviele G. Osteoclasts-key players in skeletal health and disease. Microbiol Spectr. 2016;4(3). https://doi.org/10.1128/microbiolspec.MCHD-0011-2015.

  3. Takahashi N, Akatsu Y, Udawa N, et al. Osteoblastic cells are involved in osteoclast formation. Endocrinology. 1988;123:2600–2. https://doi.org/10.1210/endo-123-5-2600.

    Article  PubMed  CAS  Google Scholar 

  4. Udafawa N, Takahashi N, Akatsu T, et al. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenviroment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A. 1990;87:7260–4.

    Article  Google Scholar 

  5. Stanley ER, Chitu V. CSF-1 receptor signalling in myeloid cells. Cold Spring Harb Perspect Biol. 2014;6:a021857. https://doi.org/10.1101/cshperspect.a021857.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Glantschnig H, Fisher JE, Wsolowski G, et al. M-CSF, TNFa and RANK ligand promote osteoclast survival by signalling hrough mTOR/S6 kinase. Cell Death Differ. 2003;10:1165–77. https://doi.org/10.1038/sj.cdd.4401285.

    Article  PubMed  CAS  Google Scholar 

  7. Zamani A, Decker C, Cremasco V, et al. Diacylglycerol kinase ζ (DGKζ) is a critical regulator of bone homeostasis via modulation of c-Fos levels in osteoclasts. J Bone Miner Res. 2015;30:1852–63. https://doi.org/10.1002/jbmr.2533.

    Article  PubMed  CAS  Google Scholar 

  8. Li J, Chen L, Zhu L, Pollard JW. Conditional deletion of the colony stimulating factor-1 receptor (c-fms proto-oncogene) in mice. Genesis. 2006;44:328–35. https://doi.org/10.1002/dvg.20219.

    Article  PubMed  CAS  Google Scholar 

  9. Chen Z, Buki K, Vaananen HK. The critical role of IL-34 in osteoclastogenesis. PLoS One. 2011;6:e18689. https://doi.org/10.1371/journal.pone.0018689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397:315–23. https://doi.org/10.1038/16852.

    Article  PubMed  CAS  Google Scholar 

  11. Bucay N, Sarosi I, Duncstan CR, et al. Osteoprotegerin-deficient mice develop eartly onset osteoporosis and arterial calcification. Genes Dev. 1998;12:1260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Whyte MP, Tau C, McAlister W, et al. Juvenile Paget’s disease with heterozygous duplication within TNFRSF11A encoding RANKL. Bone. 2014;68:153–61. https://doi.org/10.1016/j.bone.2014.07.019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Brunetti G, Marzano F, Colucci S, Ventura A, et al. Genotype-phenotype correlation in juvenile paget disease: role of molecular alterations of the TNFRSF11B gene. Endocrine. 2012;42(2):266–71. https://doi.org/10.1007/s12020-012-9705-0.

    Article  PubMed  CAS  Google Scholar 

  14. Hughes AE, Ralston SH, Marken J, et al. Mutations in TNFRSF11A, affectiong the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet. 2000;24:45–8. https://doi.org/10.1038/71667.

    Article  PubMed  CAS  Google Scholar 

  15. Novack DV, Teitelbaum SL. The osteoclast: friend or foe? Annu Rev Pathol. 2008;3:457–84. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151431.

    Article  PubMed  CAS  Google Scholar 

  16. Smink JJ, Bégay V, Schoenmaker T, et al. Transcription facton C/EBPb isoform ratio regulates osteoclastogenesis through MafB. EMBO J. 2009;28:1769–81. https://doi.org/10.1038/emboj.2009.127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) instegrate RANKL signalling in terminal differentiation of osteoclasts. Dev Cell. 2002;3:889–901. https://doi.org/10.1016/S1534-5807(02)00369-6.

    Article  PubMed  CAS  Google Scholar 

  18. Alhawagri M, Yamanaka Y, Ballard D, et al. Lysine392, a K63-linked ubiquination site in NEMO mediates inglammatory osteoclastogenesis and osteolysis. J Orthop Res. 2012;30:554–60. https://doi.org/10.1002/jor.21555.

    Article  PubMed  CAS  Google Scholar 

  19. Mao D, Epple H, Uthgenannt B, et al. PLCy2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J Clin Invest. 2006;116:2869–79. https://doi.org/10.1172/JCI28775.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bronisz A, Carey HA, Godlewski J, et al. The multifunctional protein fusd in sarcoma (FUS) is a coactivator of microphtalmia-associated transcription factor (MITF). J Biol Chem. 2014;289:326–34. https://doi.org/10.1074/jbc.M113.493874.

    Article  PubMed  CAS  Google Scholar 

  21. Yasui T, Hirose J, Aburatani H, et al. Epigenetic regulation of osteoclast differentiation. Ann N Y Acad Sci. 2011;1240:7–13. https://doi.org/10.1111/j.1749-6632.2011.06245.x.

    Article  PubMed  CAS  Google Scholar 

  22. Kim JH, Kim N. Reguation of NFATc1 in osteoclast differentiation. J Bone Metab. 2014;21:233–41. https://doi.org/10.11005/jbm.2014.21.4.233.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mizoguchi F, Izu Y, Hayata T, et al. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem. 2010;109:866–75. https://doi.org/10.1002/jcb.22228.

    Article  PubMed  CAS  Google Scholar 

  24. Yasui T, Hirose J, Tsutsumi S, et al. Epigenetic regulation of osteoclast differentiation: possible involvement of Jmjd3 in the histone demethylation of Nfact1. J Bone Miner Res. 2011;26:2665–71. https://doi.org/10.1002/jbmr.464.

    Article  PubMed  CAS  Google Scholar 

  25. Luo J, Yang Z, Ma Y, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 2016;22(5):539–46. https://doi.org/10.1038/nm.4076.

    Article  PubMed  CAS  Google Scholar 

  26. Zou W, Reeve JL, Iu Y, et al. DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk. Mol Cell. 2008;31:422–31. https://doi.org/10.1016/j.molcel.2008.06.023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mòcsai A, Humpherey MB, Van Ziffle JAG, et al. The immunomodulatory adapter proteins DAP12 and Fc receptor y-chain (FcRy) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci U S A. 2004;101:6158–63. https://doi.org/10.1073/pnas.0401602101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Koga T, Inui M, Inour L, et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature. 2004;428:758–63. https://doi.org/10.1038/nature02444.

    Article  PubMed  CAS  Google Scholar 

  29. Zou W, Teitelbaum SL. Absence of Dap12 and the avb3 integrin causes severe ostepetrosis. J Cell Biol. 2015;208:125–36. https://doi.org/10.1083/jcb.201410123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Johnson RA, Boyce BF, Mundy GR, et al. Tumors producing human necrosis factor induce hypercalcemia and osteoclastic bone resorption in nude mice. Endocrinology. 1989;124:1424–7.

    Article  CAS  PubMed  Google Scholar 

  31. Pfeilschifter J, Chenu C, Bird A, et al. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro. J Bone Miner Res. 1989;4:113–8. https://doi.org/10.1002/jbmr.5650040116.

    Article  PubMed  CAS  Google Scholar 

  32. Azuma Y, Kaji L, Katogi R, et al. Tumor necrosis factor-a induces differentiation of and bone resorption by osteoclasts. J Biol Chem. 2000;275:4858–64. https://doi.org/10.1074/jbc.275.7.4858.

    Article  PubMed  CAS  Google Scholar 

  33. Kudo O, Fujikawa Y, Itonaga I, et al. Proinflammatory cytokine (TNFa/IL-1alpha) induction of human osteoclast formation. J Pathol. 2002;198:220–7. https://doi.org/10.1002/path.1190.

    Article  PubMed  CAS  Google Scholar 

  34. Lam J, Takeshita S, Barker JE, et al. TNF-a induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106:1481–8. https://doi.org/10.1172/JCI11176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. O’Gradaigh D, Ireland D, Bord S, et al. Joint erosion in rheumatoid arthritis: interactions between tumour necrosis factor a, interleukin 1, and receptor activator of nuclear factor kB ligand (RANKL) regulate osteoclasts. Ann Rheum Dis. 2004;63:354–9. https://doi.org/10.1136/ard.2003.008458.

    Article  CAS  Google Scholar 

  36. Novack DV, Yin L, Hagen-Stapleton A, et al. The IkB function of NF-kB2 p100 controls stimulated osteoclatogenesis. J Exp Med. 2003;198:771–81. https://doi.org/10.1084/jem.20030116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhao B, Grimes SN, Li S, et al. TNF-induced osteoclastogensis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med. 2012;209:319–34. https://doi.org/10.1084/jem.20111566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Mauri DN, Ebner R, Montgomery RI, et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin α are ligands for herpesvirus entry mediator. Immunity. 1998;8:21–30. https://doi.org/10.1016/S1074-7613(00)80455-0.

    Article  PubMed  CAS  Google Scholar 

  39. Tamada K, Shimozaki K, Chapoval AI, et al. LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J Immunol. 2000;164:4105–10. https://doi.org/10.4049/jimmunol.164.8.4105.

    Article  PubMed  CAS  Google Scholar 

  40. Holmes TD, Wilson EB, Black EV, et al. Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT. Proc Natl Acad Sci U S A. 2014;111(52):E5688–96. https://doi.org/10.1073/pnas.1411072112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Harrop JA, Reddy M, Dede K, et al. Antibodies to TR2 (herpesvirus entry mediator), a new member of the TNF receptor superfamily, block T cell proliferation, expression of activation markers, and production of cytokines. J Immunol. 1998;161:1786–94.

    PubMed  CAS  Google Scholar 

  42. Kwon BS, Tan KB, Ni J, et al. A newly identified member of the tumor necrosis factor receptor superfamily with a wide tissue distribution and involvement in lymphocyte activation. J Biol Chem. 1997;272:14272–6. https://doi.org/10.1074/jbc.272.22.14272.

    Article  PubMed  CAS  Google Scholar 

  43. Browning JL, Miatkowski K, Sizing I, et al. Signaling through the lymphotoxin β receptor induces the death of some adenocarcinoma tumor lines. J Exp Med. 1996;183:867–78.

    Article  CAS  PubMed  Google Scholar 

  44. Harrop JA, McDonnell PC, Brigham-Burke M, et al. Herpesvirus entry mediator ligand (HVEM-L), a novel ligand for HVEM/TR2, stimulates proliferation of T cells and inhibits HT29 cell growth. J Biol Chem. 1998;273:27548–56. https://doi.org/10.1074/jbc.273.42.27548.

    Article  PubMed  CAS  Google Scholar 

  45. Hsu H, Solovyev I, Colombero A, et al. ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5. J Biol Chem. 1997;272:13471–4. https://doi.org/10.1074/jbc.272.21.13471.

    Article  PubMed  CAS  Google Scholar 

  46. Marsters SA, Ayres TM, Skubatch M, et al. Herpesvirus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factor family and activates the transcription factors NF-kappaB and AP-1. J Biol Chem. 1997;272:14029–32. https://doi.org/10.1074/jbc.272.22.14029.

    Article  PubMed  CAS  Google Scholar 

  47. Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptor-associated factors (TRAFs)—a family of adapter proteins that regulates life and death. Genes Dev. 1998;12:2821–30. https://doi.org/10.1101/gad.12.18.2821.

    Article  PubMed  CAS  Google Scholar 

  48. Zhai Y, Guo R, Hsu TL, et al. LIGHT, a novel ligand for lymphotoxin beta receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. J Clin Invest. 1998;102:1142–51. https://doi.org/10.1172/JCI3492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rooney IA, Butrovich KD, Glass AA, et al. The lymphotoxin-beta receptor is necessary and sufficient for LIGHT-mediated apoptosis of tumor cells. J Biol Chem. 2000;275:14307–15. https://doi.org/10.1074/jbc.275.19.14307.

    Article  PubMed  CAS  Google Scholar 

  50. Granger SW, Rickert S. LIGHT-HVEM signaling and the regulation of T cell-mediated immunity. Cytokine Growth Factor Rev. 2003;14:289–96. https://doi.org/10.1172/JCI11176.

    Article  PubMed  CAS  Google Scholar 

  51. Tamada K, Shimozaki K, Chapoval AI, et al. Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med. 2000;6:283–9. https://doi.org/10.1038/73136.

    Article  PubMed  CAS  Google Scholar 

  52. Shaikh RB, Santee S, Granger SW, et al. Constitutive expression of LIGHT on T cells leads to lymphocyte activation, inflammation, and tissue destruction. J Immunol. 2001;167:6330–7. https://doi.org/10.4049/jimmunol.167.11.6330.

    Article  PubMed  CAS  Google Scholar 

  53. Wang J, Lo JC, Foster A, et al. The regulation of T cell homeostasis and autoimmunity by T cell-derived LIGHT. J Clin Invest. 2001;108:1771–80. https://doi.org/10.1172/JCI13827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Colucci S, Brunetti G, Mori G, et al. Soluble decoy receptor 3 modulates the survival and formation of osteoclasts from multiple myeloma bone disease patients. Leukemia. 2009;23(11):2139–46. https://doi.org/10.1038/leu.2009.136.

    Article  PubMed  CAS  Google Scholar 

  55. Ishida S, Yamane S, Nakano S, et al. The interaction of monocytes with rheumatoid synovial cells is a key step in LIGHT-mediated inflammatory bone destruction. Immunology. 2009;128:e315–24. https://doi.org/10.1111/j.1365-2567.2008.02965.x.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Edwards JR, Sun SG, Locklin R, et al. LIGHT (TNFSF14), a novel mediator of bone resorption, is elevated in rheumatoid arthritis. Arthritis Rheum. 2006;54:1451–62. https://doi.org/10.1002/art.21821.

    Article  PubMed  CAS  Google Scholar 

  57. Hemingway F, Kashima TG, Knowles HJ, et al. Investigation of osteoclastogenic signalling of the RANKL substitute LIGHT. Exp Mol Pathol. 2013;94:380–5. https://doi.org/10.1016/j.yexmp.2013.01.003.

    Article  PubMed  CAS  Google Scholar 

  58. Brunetti G, Rizzi R, Oranger A, et al. LIGHT/TNFSF14 increases osteoclastogenesis and decreases osteoblastogenesis in multiple myeloma-bone disease. Oncotarget. 2014;5(24):12950–67. https://doi.org/10.18632/oncotarget.2633.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brunetti G, Faienza MF, Colaianni G, et al. Impairment of Bone Remodeling in LIGHT/TNFSF14-Deficient Mice. J Bone Miner Res. 2018;33:704–19. https://doi.org/10.1002/jbmr.3345.

  60. Colucci S, Mori G, Brunetti G, et al. Interleukin-7 production by B lymphocytes affects the T cell-dependent osteoclast formation in an in vitro model derived from human periodontitis patients. Int J Immunopathol Pharmacol. 2005;18(3 Suppl):13–9.

    PubMed  CAS  Google Scholar 

  61. Yao Z, Painter SL, Fanslow WC, et al. Human IL-17: a novel cytokine derived from T cells. J Immunol. 1995;155:5483–6.

    PubMed  CAS  Google Scholar 

  62. Lubberts E, Koenders M, van den Berg WB. The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther. 2005;7:29–37. https://doi.org/10.1186/ar1478.

    Article  PubMed  CAS  Google Scholar 

  63. Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2011;13(1):27–38. https://doi.org/10.1038/nrm3254.

    Article  PubMed  CAS  Google Scholar 

  64. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95:3597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–64. https://doi.org/10.1016/S0092-8674(00)80258-5.

    Article  PubMed  CAS  Google Scholar 

  66. Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89:773–9. https://doi.org/10.1016/S0092-8674(00)80260-3.

    Article  PubMed  CAS  Google Scholar 

  67. Lee B, Thirunavukkarasu K, Zhou L, et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet. 1997;16:307–10. https://doi.org/10.1038/ng0797-307.

    Article  PubMed  CAS  Google Scholar 

  68. Faienza MF, Ventura A, Piacente L, et al. Osteoclastogenic potential of peripheral blood mononuclear cells in cleidocranial dysplasia. Int J Med Sci. 2014;11(4):356–64. https://doi.org/10.7150/ijms.7793.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ducy P, Starbuck M, Priemel M, et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 1999;13:1025–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lian JB, Javed A, Zaidi SK, et al. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr. 2004;14(1-2):1–41. https://doi.org/10.1615/CritRevEukaryotGeneExpr.v14.i12.10.

    Article  PubMed  CAS  Google Scholar 

  71. Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108:17–29. https://doi.org/10.1016/S0092-8674(01)00622-5.

    Article  PubMed  CAS  Google Scholar 

  72. Zhou X, Zhang Z, Feng JQ, et al. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc Natl Acad Sci U S A. 2010;107:12919–24. https://doi.org/10.1073/pnas.0912855107.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yang X, Matsuda K, Bialek P, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin–Lowry Syndrome. Cell. 2004;117:387–98. https://doi.org/10.1016/S0092-8674(04)00344-7.

    Article  PubMed  CAS  Google Scholar 

  74. Elefteriou F, Benson MD, Sowa H, et al. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab. 2006;4:441–51. https://doi.org/10.1016/j.cmet.2006.10.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer. 2003;3:859–68. https://doi.org/10.1038/nrc1209.

    Article  PubMed  CAS  Google Scholar 

  76. Eferl R, Hoebertz A, Schilling AF, et al. The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J. 2004;23:2789–99. https://doi.org/10.1038/sj.emboj.7600282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Bozec A, Bakiri L, Jimenez M, et al. Fra-2/AP-1 controls bone formation by regulating osteoblast differentiation and collagen production. J Cell Biol. 2010;190:1093–106. https://doi.org/10.1083/jcb.201002111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Jochum W, David JP, Elliott C, et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med. 2000;6:980–4. https://doi.org/10.1038/79676.

    Article  PubMed  CAS  Google Scholar 

  79. Kveiborg M, Sabatakos G, Chiusaroli R, et al. ΔFosB induces osteosclerosis and decreases adipogenesis by two independent cellautonomous mechanisms. Mol Cell Biol. 2004;24:2820–30. https://doi.org/10.1128/MCB.24.7.2820-2830.2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sabatakos G, Sims NA, Chen J, et al. Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med. 2000;6:985–90. https://doi.org/10.1038/79683.

    Article  PubMed  CAS  Google Scholar 

  81. Huelsken J, Birchmeier W. New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev. 2001;11:547–53. https://doi.org/10.1016/S0959-437X(00)00231-8.

    Article  PubMed  CAS  Google Scholar 

  82. Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell. 2003;5:367–77. https://doi.org/10.1016/S1534-5807(03)00266-1.

    Article  PubMed  CAS  Google Scholar 

  83. Wu X, Tu X, Joeng KS, et al. Rac1 activation controls nuclear localization of β-catenin during canonical Wnt signaling. Cell. 2008;133:340–53. https://doi.org/10.1016/j.cell.2008.01.052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107:513–23. https://doi.org/10.1016/S0092-8674(01)00571-2.

    Article  PubMed  CAS  Google Scholar 

  85. Boyden LM, Mao J, Belsky J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346:1513–21. https://doi.org/10.1056/NEJMoa013444.

    Article  PubMed  CAS  Google Scholar 

  86. Little RD, Carulli JP, Del Mastro RG, et al. A mutation in the LDL receptorrelated protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70:11–9. https://doi.org/10.1086/338450.

    Article  PubMed  CAS  Google Scholar 

  87. Ai M, Holmen SL, Van Hul W, et al. Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Mol Cell Biol. 2005;25:4946–55. https://doi.org/10.1128/MCB.25.12.4946-4955.2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Semenov MV, He X. LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem. 2006;281:38276–84. https://doi.org/10.1074/jbc.M609509200.

    Article  PubMed  CAS  Google Scholar 

  89. Ellies DL, Viviano B, McCarthy J, et al. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res. 2006;21:1738–49. https://doi.org/10.1359/jbmr.060810.

    Article  PubMed  CAS  Google Scholar 

  90. Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43. https://doi.org/10.1093/hmg/10.5.537.

    Article  PubMed  CAS  Google Scholar 

  91. Balemans W, Patel N, Ebeling M, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39:91–7. https://doi.org/10.1136/jmg.39.2.91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Brunkow ME, Gardner JC, Van Ness J. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68:577–89. https://doi.org/10.1086/318811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Staehling-Hampton K, Proll S, Paeper BW, et al. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet. 2002;110:144–52. https://doi.org/10.1002/ajmg.10401.

    Article  PubMed  Google Scholar 

  94. Hu H, Hilton MJ, Tu X, et al. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development. 2005;132:49–60. https://doi.org/10.1242/dev.01564.

    Article  PubMed  CAS  Google Scholar 

  95. Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006;133:3231–44. https://doi.org/10.1242/dev.02480.

    Article  PubMed  CAS  Google Scholar 

  96. Day TF, Guo X, Garrett-Beal L, et al. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8:739–50. https://doi.org/10.1016/j.devcel.2005.03.016.

    Article  PubMed  CAS  Google Scholar 

  97. Hill TP, Spater D, Taketo MM, et al. Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell. 2005;8:727–38. https://doi.org/10.1016/j.devcel.2005.02.013.

    Article  PubMed  CAS  Google Scholar 

  98. Qian D, Jones C, Rzadzinska A, et al. Wnt5a functions in planar cell polarity regulation in mice. Dev Biol. 2007;306(1):121–33. https://doi.org/10.1016/j.ydbio.2007.03.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Witze ES, Litman ES, Argast GM, et al. Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors. Science. 2008;320(5874):365–9. https://doi.org/10.1126/science.1151250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Gómez-Orte E, Sáenz-Narciso B, Moreno S, et al. Multiple functions of the noncanonical Wnt pathway. Trends Genet. 2013;29(9):545–53. https://doi.org/10.1016/j.tig.2013.06.003.

    Article  PubMed  CAS  Google Scholar 

  101. Lories RJ, Corr M, Lane NE. To Wnt or not to Wnt: the bone and joint health dilemma. Nat Rev Rheumatol. 2013;9(6):328–39. https://doi.org/10.1038/nrrheum.2013.25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006;4(4):e115. https://doi.org/10.1371/journal.pbio.0040115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Benhaj K, Akcali KC, Ozturk M. Redundant expression of canonical Wnt ligands in human breast cancer cell lines. Oncol Rep. 2006;15(3):701–7. https://doi.org/10.3892/or.15.3.701.

    Article  PubMed  CAS  Google Scholar 

  104. Tsuji K, Bandyopadhyay A, Harfe BD, et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006;38:1424–9. https://doi.org/10.1038/ng1916.

    Article  PubMed  CAS  Google Scholar 

  105. Kamiya N, Ye L, Kobayashi T, Mochida Y, et al. BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development. 2008;135:3801–11. https://doi.org/10.1242/dev.025825.

    Article  PubMed  CAS  Google Scholar 

  106. Kamiya N, Ye L, Kobayashi T, et al. Disruption of BMP signaling in osteoblasts through type IA receptor (BMPRIA) increases bone mass. J Bone Miner Res. 2008;23:2007–17. https://doi.org/10.1359/jbmr.080809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Kamiya N, Kobayashi T, Mochida Y, et al. Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J Bone Miner Res. 2010;25:200–10. https://doi.org/10.1359/jbmr.090806.

    Article  PubMed  CAS  Google Scholar 

  108. Mishina Y, Starbuck MW, Gentile MA, et al. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J Biol Chem. 2004;279:27560–6. https://doi.org/10.1074/jbc.M404222200.

    Article  PubMed  CAS  Google Scholar 

  109. Devlin RD, Du Z, Pereira RC, et al. Skeletal overexpression of noggin results in osteopenia and reduced bone formation. Endocrinology. 2003;144:1972–8. https://doi.org/10.1210/en.2002-220918.

    Article  PubMed  CAS  Google Scholar 

  110. Tan X, Weng T, Zhang J, et al. Smad4 is required for maintaining normal murine postnatal bone homeostasis. J Cell Sci. 2007;120:2162–70. https://doi.org/10.1242/jcs.03466.

    Article  PubMed  CAS  Google Scholar 

  111. Negishi-Koga T, Takayanagi H. Bone cell communication factors and Semaphorins. Bonekey Rep. 2012;1:183. https://doi.org/10.1038/bonekey.2012.183.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hayashi M, Nakashima T, Taniguchi M, et al. Osteoprotection by semaphorin 3A. Nature. 2012;485(7396):69–74. https://doi.org/10.1038/nature11000.

    Article  PubMed  CAS  Google Scholar 

  113. Fukuda T, Takeda S, Xu R, et al. Sema3A regulates bone-mass accrual through sensory innervations. Nature. 2013;497(7450):490–3. https://doi.org/10.1038/nature12115.

    Article  PubMed  CAS  Google Scholar 

  114. Negishi-Koga T, Shinohara M, Komatsu N, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17(11):1473–80. https://doi.org/10.1038/nm.2489.

    Article  PubMed  CAS  Google Scholar 

  115. Holmes S, Downs AM, Fosberry A, et al. Sema7A is a potent monocyte stimulator. Scand J Immunol. 2002;56:270–5. https://doi.org/10.1046/j.1365-3083.2002.01129.x.

    Article  PubMed  CAS  Google Scholar 

  116. Koh JM, Oh B, Lee JY, et al. Association study of semaphorin 7a (sema7a) polymorphisms with bone mineral density and fracture risk in postmenopausal Korean women. J Hum Genet. 2006;51(2):112–7. https://doi.org/10.1007/s10038-005-0331-z.

    Article  PubMed  CAS  Google Scholar 

  117. Sutton AL, Zhang X, Dowd DR, et al. Semaphorin 3B is a 1,25-Dihydroxyvitamin D3-induced gene in osteoblasts that promotes osteoclastogenesis and induces osteopenia in mice. Mol Endocrinol. 2008;22(6):1370–81. https://doi.org/10.1210/me.2007-0363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Rucci N, Capulli M, Piperni SG, Cappariello A, et al. Lipocalin 2: a new mechanoresponding gene regulating bone homeostasis. J Bone Miner Res. 2015;30(2):357–68. https://doi.org/10.1002/jbmr.2341.

    Article  PubMed  CAS  Google Scholar 

  119. Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8. https://doi.org/10.1038/nature10777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Colaianni G, Cuscito C, Mongelli T, et al. The myokine irisin increases cortical bone mass. Proc Natl Acad Sci U S A. 2015;112:12157–62. https://doi.org/10.1038/bonekey.2015.134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Colaianni G, Cuscito C, Mongelli T, et al. Irisin enhances osteoblast differentiation in vitro. Int J Endocrinol. 2014;2014:902186. https://doi.org/10.1155/2014/902186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Qiao X, Nie Y, Ma Y, et al. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci Rep. 2016;6:21053. https://doi.org/10.1038/srep21053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Toma CD, Ashkar S, Gray ML, et al. Signal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts. J Bone Miner Res. 1997;12(10):1626–36. https://doi.org/10.1359/jbmr.1997.12.10.1626.

    Article  PubMed  CAS  Google Scholar 

  124. Lin C, Jiang X, Dai Z, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res. 2009;24(10):1651–61. https://doi.org/10.1359/jbmr.090411.

    Article  PubMed  CAS  Google Scholar 

  125. Parfitt AM. The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. Part I of IV parts: mechanisms of calcium transfer between blood and bone and their cellular basis: morphological and kinetic approaches to bone turnover. Metabolism. 1976;25:809–44.

    Article  CAS  PubMed  Google Scholar 

  126. Martin RB, Burr DB, Sharkey NA. Skeletal tissue mechanics. New York: Springer; 1998.

    Book  Google Scholar 

  127. Zhang K, Barragan-Adjemian C, Ye L, et al. E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol. 2006;26:4539–52. https://doi.org/10.1128/MCB.02120-05.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Hughes DE, Salter DM, Simpson R. CD44 expression in human bone: a novel marker of osteocytic differentiation. J Bone Miner Res. 1994;9:39–44. https://doi.org/10.1002/jbmr.5650090106.

    Article  PubMed  CAS  Google Scholar 

  129. Ohizumi I, Harada N, Taniguchi K, et al. Association of CD44 with OTS-8 in tumor vascular endothelial cells. Biochim Biophys Acta. 2000;1497:197–203. https://doi.org/10.1016/S0167-4889(00)00063-X.

    Article  PubMed  CAS  Google Scholar 

  130. Tanaka-Kamioka K, Kamioka H, Ris H, et al. Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J Bone Miner Res. 1998;13:1555–68. https://doi.org/10.1359/jbmr.1998.13.10.1555.

    Article  PubMed  CAS  Google Scholar 

  131. Kamioka H, Sugawara Y, Honjo T, et al. Terminal differentiation of osteoblasts to osteocytes is accompanied by dramatic changes in the distribution of actin-binding proteins. J Bone Miner Res. 2004;19:471–8. https://doi.org/10.1359/JBMR.040128.

    Article  PubMed  CAS  Google Scholar 

  132. Bellido T, Plotkin LI, Bruzzaniti A. In: Burr D, Allen M, editors. Bone cells in basic and applied bone biology. Waltham: Elsevier; 2014. p. 27–45.

    Chapter  Google Scholar 

  133. Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38:1310–5. https://doi.org/10.1038/ng1905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Holmbeck K, Bianco P, Pidoux I, et al. The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci. 2005;118:147–56. https://doi.org/10.1242/jcs.01581.

    Article  PubMed  CAS  Google Scholar 

  135. Zhao W, Byrne MH, Wang Y, et al. Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen. J Clin Invest. 2000;106:941–9. https://doi.org/10.1172/JCI10158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Qiu S, Rao DS, Palnitkar S, et al. Age and distance from the surface but not menopause reduce osteocyte density in human cancellous bone. Bone. 2002;31(2):313–8. https://doi.org/10.1016/S8756-3282(02)00819-0.

    Article  PubMed  CAS  Google Scholar 

  137. Almeida M, Han L, Martin-Millan M, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282(37):27285–97. https://doi.org/10.1074/jbc.M702810200.

    Article  PubMed  CAS  Google Scholar 

  138. Bivi N, Condon KW, Allen MR, et al. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res. 2012;27(2):374–89. https://doi.org/10.1002/jbmr.548.

    Article  PubMed  CAS  Google Scholar 

  139. Shimada T, Mizutani S, Muto T, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001;98(11):6500–5. https://doi.org/10.1073/pnas.101545198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Sitara D, Razzaque MS, Hesse M, et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004;23(7):421–32. https://doi.org/10.1016/j.matbio.2004.09.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Feng JQ, Clinkenbeard EL, Yuan B, et al. Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia. Bone. 2013;54(2):213–21. https://doi.org/10.1016/j.bone.2013.01.046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Gowen LC, Petersen DN, Mansolf AL, et al. Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem. 2003;278(3):1998–2007. https://doi.org/10.1074/jbc.M203250200.

    Article  PubMed  CAS  Google Scholar 

  143. Harris SE, Gluhak-Heinrich J, Harris MA, et al. DMP1 and MEPE expression are elevated in osteocytes after mechanical loading in vivo: theoretical role in controlling mineral quality in the perilacunar matrix. J Musculoskelet Neuronal Interact. 2007;7(4):313–5.

    PubMed  CAS  Google Scholar 

  144. Rowe PS. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr. 2012;22(1):61–86. https://doi.org/10.1615/CritRevEukarGeneExpr.v22.i1.50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Yuan B, Takaiwa M, Clemens TL, et al. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J Clin Invest. 2008;118(2):722–34. https://doi.org/10.1172/JCI32702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Mattinzoli D, Rastaldi MP, Ikehata M, et al. FGF23-regulated production of Fetuin-A (AHSG) in osteocytes. Bone. 2016;83:35–47. https://doi.org/10.1016/j.bone.2015.10.008.

    Article  PubMed  CAS  Google Scholar 

  147. Paic F, Igwe JC, Nori R, et al. Identification of differentially expressed genes between osteoblasts and osteocytes. Bone. 2009;45(4):682–92. https://doi.org/10.1016/j.bone.2009.06.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Bodine PV, Billiard J, Moran RA, et al. The Wnt antagonist secreted frizzled-related protein-1 controls osteoblast and osteocyte apoptosis. J Cell Biochem. 2005;96(6):1212–30. https://doi.org/10.1002/jcb.20599.

    Article  PubMed  CAS  Google Scholar 

  149. Poole KE, van Bezooijen RL, Loveridge N, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005;19(13):1842–4. https://doi.org/10.1096/fj.05-4221fje.

    Article  PubMed  CAS  Google Scholar 

  150. Leupin O, Piters E, Halleux C, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286(22):19489–500. https://doi.org/10.1074/jbc.M110.190330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Cui Y, Niziolek PJ, MacDonald BT, et al. Lrp5 functions in bone to regulate bone mass. Nat Med. 2011;17(6):684–91. https://doi.org/10.1038/nm.2388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Kato Y, Windle JJ, Koop BA, et al. Establishment of an osteocyte-like cell line, MLO-Y4. J Bone Miner Res. 1997;12(12):2014–23. https://doi.org/10.1359/jbmr.1997.12.12.2014.

    Article  PubMed  CAS  Google Scholar 

  153. Confavreux CB, Levine RL, Karsenty G. A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms. Mol Cell Endocrinol. 2009;310(1-2):21–9. https://doi.org/10.1016/j.mce.2009.04.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Xiong J, Onal M, Jilka RL, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4. https://doi.org/10.1038/nm.2452.

    Article  CAS  Google Scholar 

  155. Plotkin LI, Bellido T. Osteocytic signalling pathways as therapeutic targets for bone fragility. Nat Rev Endocrinol. 2016;12(10):593–605. https://doi.org/10.1038/nrendo.2016.71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  156. Kramer I, Halleux C, Keller H, et al. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010;30(12):3071–85. https://doi.org/10.1128/MCB.01428-09.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Holmen SL, Zylstra CR, Mukherjee A, et al. Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem. 2005;280(22):21162–8. https://doi.org/10.1074/jbc.M501900200.

    Article  PubMed  CAS  Google Scholar 

  158. Glass DA, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751–64. https://doi.org/10.1016/j.devcel.2005.02.017.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brunetti, G., Colaianni, G., Colucci, S., Grano, M. (2018). Anatomy and Physiology of Skeletal Tissue: The Bone Cells. In: Lenzi, A., Migliaccio, S. (eds) Multidisciplinary Approach to Osteoporosis. Springer, Cham. https://doi.org/10.1007/978-3-319-75110-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75110-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75108-5

  • Online ISBN: 978-3-319-75110-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics