Skip to main content

Oscillator Configurations

  • Chapter
  • First Online:
Principles of Free Electron Lasers
  • 1089 Accesses

Abstract

The gain mechanism can also be used as an oscillator by feedback of a portion of the output signal. An oscillator may be self-excited in the sense that radiation will spontaneously grow from noise if the gain on traversing the wiggler exceeds the losses. An oscillator may also be mode-locked by the injection of a large-amplitude signal with a frequency within the gain band. Since the gain in the interaction region increases with beam current, there is a threshold value of current (known as the start current) below which the gain is exceeded by the losses in the cavity and the radiation will not grow. If the beam current exceeds this threshold, spontaneous noise in the electron beam will be amplified and will grow exponentially in time until the radiation in the oscillator reaches saturation. There are a number of reasons for constructing an oscillator as opposed to an amplifier. First, it may be that no source is available to drive an amplifier. Second, the amplification in one pass through the wiggler may be too small. An amplifier with a small gain is of little practical value. However, if most of the output signal can be fed back to the input, a useful oscillator can be constructed. As a general rule, one finds that shorter-wavelength devices which rely on relatively high-energy but low-current electron beam sources fall into this category and tend to be oscillators because of their inherent low gain. In this chapter we discuss the general theory underlying free-electron laser oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.B. Colson, S.K. Ride, The free-electron laser, Maxwell’s equations driven by single particle currents, in Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, vol. 7, ed. by S.F. Jacobs, H.S. Pilloff, M. Sargent, M.O. Scully, R. Spitzer (Addison-Wesley, Reading, 1980), p. 377

    Google Scholar 

  2. Y.L. Bogomolov, V.L. Bratman, N.S. Ginzburg, M.I. Petelin, A.D. Yunakovsky, Nonstationary generation in free-electron lasers. Opt. Commun. 36, 209 (1981)

    Article  Google Scholar 

  3. N.M. Kroll, P.L. Morton, M.N. Rosenbluth, Free-electron lasers with variable parameter wigglers. IEEE J. Quantum Electron. QE-17, 1436 (1981)

    Article  Google Scholar 

  4. N.S. Ginzburg, M.I. Petelin, Multifrequency generation in free-electron lasers with quasi-optical resonantors. Int. J. Electron. 59, 291 (1985)

    Article  Google Scholar 

  5. H. Al-Abawi, F.A. Hopf, G.T. Moore, M.O. Scully, Coherent transients in the free-electron laser: laser lethargy and coherence brightening. Opt. Commun. 30, 235 (1979)

    Article  Google Scholar 

  6. S.S. Yu, W.M. Sharp, W.M. Fawley, E.T. Scharlemann, A.M. Sessler, E.J. Sternbach, Waveguide suppression of the free-electron laser sideband instability. Nucl. Instr. Meth. A259, 219 (1987)

    Article  Google Scholar 

  7. W.B. Colson, J. Blau, Parameterizing physical effects in free-electron lasers. Nucl. Instr. Meth. A272, 386 (1988)

    Article  Google Scholar 

  8. B. Levush, T.M. Antonsen Jr., Regions of stability of free-electron laser oscillators. Nucl. Instr. Meth. A272, 375 (1988)

    Article  Google Scholar 

  9. W.B. Colson, Classical free-electron laser theory, in The Laser Handbook: Free-Electron Lasers, vol. 6, ed. by W.B. Colson, C. Pellegrini, A. Renieri (North Holland, Amsterdam, 1990), p. 115

    Google Scholar 

  10. J.R. Pierce, Traveling Wave Tubes (Van Nostrand, New York, 1950)

    Google Scholar 

  11. R.E. Collin, Foundations for Microwave Engineering (McGraw-Hill, New York, 1966)

    Google Scholar 

  12. F.A. Hopf, P. Meystre, G.T. Moore, M.O. Scully, Nonlinear theory of free-electron devices, in Physics of Quantum Electronics: Novel Sources of Coherent Radiation, vol. 5, ed. by S.F. Jacobs, M. Sargent, M.O. Scully (Addison-Wesley, Reading, 1978). p. 41

    Google Scholar 

  13. T.M. Antonsen Jr., B. Levush, Mode competition and supression in free-electron laser oscillators. Phys. Fluids B 1, 1097 (1989)

    Article  Google Scholar 

  14. W.B. Colson, R.A. Freedman, Synchrotron instability for long pulses in free-electron lasers. Opt. Commun. 46, 37 (1983)

    Article  Google Scholar 

  15. W.B. Colson, The trapped particle instability in free-electron laser oscillators and amplifiers. Nucl. Instr. Meth. A250, 168 (1986)

    Article  Google Scholar 

  16. J. Masud, T.C. Marshall, S.P. Schlesinger, F.G. Yee, W.M. Fawley, E.T. Scharlemann, S.S. Yu, A.M. Sessler, E.J. Sternbach, Sideband control in a millimeter-wave free-electron laser. Phys. Rev. Lett. 58, 763 (1987)

    Article  Google Scholar 

  17. R.W. Warren, J.C. Goldstein, B.E. Newnam, Spiking mode operation for a uniform-period wiggler. Nucl. Instr. Meth. A250, 19 (1986)

    Article  Google Scholar 

  18. R.W. Warren, J.E. Sollid, D.W. Feldman, W.E. Stein, W.J. Johnson, A.H. Lumpkin, J.C. Goldstein, Near-ideal lasing with a uniform wiggler. Nucl. Instr. Meth. A285, 1 (1989)

    Article  Google Scholar 

  19. G.S. Nusinovich, The mode interaction in free-electron lasers. Sov. Phys. Tech. Phys. 6, 848 (1980)

    Google Scholar 

  20. E.R. Stanford, T.M. Antonsen Jr., The effect of dispersion on mode competition in free-electron laser oscillators. Nucl. Instr. Meth. A304, 659 (1991)

    Google Scholar 

  21. T.M. Antonsen Jr., B. Levush, Mode competition and control in free-electron laser oscillators. Phys. Rev. Lett. 62, 1488 (1989)

    Article  Google Scholar 

  22. N.S. Ginzburg, S.P. Kuznetsov, T.M. Fedoseeva, Theory of transients in backward wave tubes. Radiofizika 21, 1037 (1978)

    Google Scholar 

  23. P. Sprangle, C.M. Tang, I.B. Bernstein, Initiation of a pulsed beam free-electron laser. Phys. Rev. Lett. 50, 1775 (1983)

    Article  Google Scholar 

  24. K.J. Kim, An analysis of self amplified spontaneous emission. Nucl. Instr. Meth. A250, 396 (1986)

    Article  Google Scholar 

  25. W. Becker, J. Gea-Banacloche, M.O. Scully, Intrinsic linewidth of a free-electron laser. Phys. Rev. A 33, 2174 (1986)

    Article  Google Scholar 

  26. A. Friedman, A. Gover, G. Kurizki, S. Ruschin, A. Yariv, Spontaneous and stimulated emission from quasi-free electrons. Rev. Mod. Phys. 60, 471 (1988)

    Article  Google Scholar 

  27. R.W. Warren, J.C. Goldstein, The generation and suppression of synchrotron sidebands. Nucl. Instr. Meth. A272, 155 (1988)

    Article  Google Scholar 

  28. L.R. Elias, R.J. Hu, G.J. Ramian, The UCSB electrostatic accelerator free-electron laser: first operation. Nucl. Instr. Meth. A237, 203 (1985)

    Article  Google Scholar 

  29. T.M. Antonsen Jr., B. Levush, Spectral characteristics of a free-electron laser with time-dependent beam energy. Phys Fluids B 2, 2791 (1990)

    Article  Google Scholar 

  30. R.L. Liboff, Introduction to the Theory of Kinetic Equations (Wiley, New York, 1969)

    MATH  Google Scholar 

  31. A. Amir, R.J. Hu, F. Kielmann, J. Mertz, L.R. Elias, Injection locking experiment at the UCSB free-electron laser. Nucl. Instr. Meth. A272, 174 (1988)

    Article  Google Scholar 

  32. L.R. Elias, G.J. Ramian, J. Hu, A. Amir, Observation of single mode operation in a free-electron laser. Phys. Rev. Lett. 57, 424 (1986)

    Article  Google Scholar 

  33. B.G. Danly, S.G. Evangelides, T.S. Chu, R.J. Tempkin, G.J. Ramian, J. Hu, Direct spectral measurements of a quasi-cw free-electron laser. Phys. Rev. Lett. 65, 2251 (1990)

    Article  Google Scholar 

  34. B. Levush, T.M. Antonsen Jr., Nonlinear mode competition and coherence in low gain free-electron laser oscillators. Nucl. Instr. Meth. A285, 136 (1989)

    Article  Google Scholar 

  35. I. Kimmel, L.R. Elias, Long-pulse free-electron lasers as sources of monochromatic radiation. Nucl. Instr. Meth. A272, 368 (1988)

    Article  Google Scholar 

  36. V.N. Litvenenko, N.A. Vinokurov, Lasing spectrum and temporal structure in storage ring free-electron lasers: theory and experiment. Nucl. Instr. Meth. A304, 66 (1991)

    Article  Google Scholar 

  37. G. Dattoli, A. Renieri, Classical multimode theory of the free-electron laser. Lett. Nuovo Cimento 59B, 1 (1979)

    Google Scholar 

  38. W.B. Colson, Optical pulse evolution in the Stanford free-electron laser and in a tapered undulator, in Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, vol. 8, ed. by S.F. Jacobs, G.T. Moore, H.S. Pilloff, M. Sargent, M.O. Scully, R. Spitzer (Addison-Wesley, Reading, 1982), p. 457

    Google Scholar 

  39. G. Dattoli, T. Hermsen, A. Renieri, A. Torre, J.C. Gallardo, Lethargy of laser oscillations and supermodes in free-electron lasers: I. Phys. Rev. A 37, 4326 (1988)

    Article  Google Scholar 

  40. G. Dattoli, T. Hermsen, L. Mezi, A. Renieri, A. Torre, Lethargy of laser oscillations and supermodes in free-electron lasers: II-quantitative analysis. Phys. Rev. A 37, 4334 (1988)

    Article  Google Scholar 

  41. J.C. Goldstein, B.E. Newnam, R.W. Warren, R.L. Sheffield, Comparison of the results of theoretical calculations with experimental measurements from the Los Alamos free-electron laser oscillator experiment. Nucl. Instr. Meth. A250, 4 (1986)

    Article  Google Scholar 

  42. P. Elleaume, Storage ring free-electron laser theory. Nucl Instr. Meth A237, 28 (1985)

    Article  Google Scholar 

  43. N.M. Kroll, Excitation of hypersonic vibrations by means of photoelastic coupling of high intensity light waves to elastic waves. J. Appl. Phys. 36, 34 (1965)

    Article  MathSciNet  Google Scholar 

  44. D. Pesme, G. Laval, R. Pellat, Parametric instabilities in bounded plasmas. Phys. Rev. Lett. 31, 203 (1973)

    Article  Google Scholar 

  45. A. Renieri, Storage ring operation of a free-electron laser: the amplifier. Nuovo Cimento 53B, 160 (1979)

    Article  Google Scholar 

  46. G. Dattoli, A. Renieri, Storage ring operation of a free-electron laser: the oscillator. Nuovo Cimento 59B, 1 (1980)

    Article  Google Scholar 

  47. J.C. Goldstein, Evolution of long pulses in a tapered wiggler free-electron laser, in Free-Electron Generators of Coherent Radiation, Proc. SPIE 453 ed. by C.A. Brau, S.F. Jacobs, M.O. Scully (Bellingham, 1984), p. 2

    Google Scholar 

  48. W.B. Colson, J.L. Richardson, Multimode theory of free-electron laser oscillators. Phys. Rev. Lett. 50, 1050 (1983)

    Article  Google Scholar 

  49. J.C. Goldstein, B.D. McVey, B.E. Carlsten, L.E. Thode, Integrated numerical modeling of free-electron laser oscillators. Nucl Instr. Meth. A285, 192 (1989)

    Article  Google Scholar 

  50. J.C. Goldstein, B.D. McVey, R.L. Tokar, C.J. Elliot, M.J. Schmidt, B.E. Carlsten, L.E. Thode, Simulation codes for modeling free-electron laser oscillators, in Modeling and Simulation of Laser Systems, Proc. SPIE, vol. 1042, ed. by D.L. Bullock (Bellingham, 1989), p. 28

    Google Scholar 

  51. S. Riyopoulos, P. Sprangle, C.M. Tang, A. Ting, Reflection matrix for optical resonantors in free-electron laser oscillators. Nucl. Instr. Meth. A272, 543 (1988)

    Article  Google Scholar 

  52. D. Iracane, J.L. Ferrer, An optimal basis equation for solving the time-dependent Schrödinger equation: simulation of guiding and multifrequency mechanisms. Nucl. Instr. Meth. A296, 417 (1990)

    Article  Google Scholar 

  53. D.A.G. Deacon, J.M. Ortega, The storage ring free-electron laser, in The Laser Handbook: Free-Electron Lasers, vol. 6, ed. by W.B. Colson, C. Pellegrini, A. Renieri (North Holland, Amsterdam, 1990), p. 345

    Google Scholar 

  54. J.M.J. Madey, Relationship between mean radiated energy, mean squared radiated energy, and spontaneous power spectrum in a power series expansion of the equation of motion in a free-electron laser. Nuovo Cimento 50B, 64 (1979)

    Article  Google Scholar 

  55. A.A. Vedenov, E.P. Velikov, R.Z. Sagdeev, Nonlinear oscillations of rarified plasma. Nucl. Fusion 1, 82 (1961)

    Article  Google Scholar 

  56. W.E. Drummond, D. Pines, Nonlinear stability of plasma oscillations. Nucl. Fusion Suppl. 3, 1049 (1962)

    Google Scholar 

  57. T. Taguchi, K. Mima, T. Mochizuki, Saturation mechanism and improvement of conversion efficiency of the free-electron laser. Phys. Rev. Lett. 46, 824 (1981)

    Article  Google Scholar 

  58. N.S. Ginzburg, M.A. Shapiro, Quasilinear theory of multimode free-electron lasers with an inhomogeneous frequency broadening. Opt. Commun. 40, 215 (1982)

    Article  Google Scholar 

  59. D.A. Edwards, M.J. Syphers, An introduction to the physics of particle accelerators, in Physics of Particle Accelerators, vol. 1, ed. by M. Month, M. Dienes (American Institute of Physics Conference Proceedings #184, New York, 1989), p. 2

    Google Scholar 

  60. N.A. Vinokurov, A.N. Skrinsky, Optical range klystron oscillator using ultrarelativistic electrons. Preprint 77-59 of the Institute of Nuclear Physics, Novosibirsk (1977)

    Google Scholar 

  61. N.A. Vinokurov, A.N. Skrinsky, On ultimate power of the optical klystron installed on electron storage ring. Preprint 77-67 of the Institute of Nuclear Physics, Novosibirsk (1977)

    Google Scholar 

  62. D.A.G. Deacon, J.M.J. Madey, Isochronous storage ring laser: a possible solution to the electron heating problem in recirculating free-electron lasers. Phys. Rev. Lett. 44, 449 (1980)

    Article  Google Scholar 

  63. A. Van Steenbergen, Accelerators and storage rings for free-electron lasers, in The Laser Handbook: Free-Electron Lasers, vol. 6, ed. by W.B. Colson, C. Pellegrini, A. Renieri (North Holland, Amsterdam, 1990), p. 417

    Google Scholar 

  64. W.M. Manheimer, T.H. Dupree, Weak turbulence theory of velocity space diffusion and nonlinear Landau damping of waves. Phys. Fluids 11, 2709 (1968)

    Article  Google Scholar 

  65. S. Krinsky, J.M. Wang, P. Luchini, Madey’s gain spread theorem for the free-electron laser and the theory of stochastic processes. J. Appl. Phys. 53, 5453 (1982)

    Article  Google Scholar 

  66. M. Billardon, P. Elleaume, J.M. Ortega, C. Bazin, M. Bergher, M. Velghe, Y. Petroff, D.A.G. Deacon, K.E. Robinson, J.M.J. Madey, First operation of a storage ring free-electron laser. Phys. Rev. Lett. 51, 1652 (1983)

    Article  Google Scholar 

  67. P. Elleaume, Macrotemporal structure of free-electron lasers. J. Phys. 45, 997 (1984)

    Article  Google Scholar 

  68. P. Elleaume, Optical klystron spontaneous emission and gain, in Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, vol. 8, ed. by S.F. Jacobs, G.T. Moore, H.S. Pilloff, M. Sargent, M.O. Scully, R. Spitzer (Addison-Wesley, Reading, 1982), p. 119

    Google Scholar 

  69. C.C. Shih, M.Z. Caponi, An optimized multicomponent wiggler design for a free-electron laser. IEEE J. Quantum Electron. QE-19, 369 (1983)

    Article  Google Scholar 

  70. P. Elleaume, Free-electron laser undulators, electron trajectories and spontaneous emission, in The Laser Handbook: Free-Electron Lasers, vol. 6, ed. by W.B. Colson, C. Pellegrini, A. Renieri (North Holland, Amsterdam, 1990), p. 91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freund, H.P., Antonsen, T.M. (2018). Oscillator Configurations. In: Principles of Free Electron Lasers . Springer, Cham. https://doi.org/10.1007/978-3-319-75106-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75106-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75105-4

  • Online ISBN: 978-3-319-75106-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics