Skip to main content

Coherent Emission: Linear Theory

  • Chapter
  • First Online:
Principles of Free Electron Lasers

Abstract

In order to give rise to stimulated emission, it is necessary for the electron beam to respond in a collective manner to the radiation field and to form coherent bunches. This can occur when a light wave traverses an undulatory magnetic field such as a wiggler because the spatial variations of the wiggler and the electromagnetic wave combine to produce a beat wave, which is essentially an interference pattern. It is the interaction between the electrons and this beat wave which gives rise to the stimulated emission in free-electron lasers. In the case of a magnetostatic wiggler, this beat wave has the same frequency as the light wave, but its wavenumber is the sum of the wavenumbers of the electromagnetic and wiggler fields. As a result, the phase velocity of the beat wave is less than that of the electromagnetic wave, and it is called a ponderomotive wave. Since the ponderomotive wave propagates at less than the speed of light in vacuo, it can be in synchronism with electrons that are limited by that velocity. Our purpose in this chapter is to give a detailed discussion of the free-electron laser as a linear gain medium as well as to provide a comprehensive derivation of the relevant formulae for the gain in various configurations in both the idealized one-dimensional and the realistic three-dimensional limits. To this end, we derive the expressions for the gain in both the low- and high-gain regimes. The low-gain regime is relevant to short-wavelength free-electron laser oscillators driven by high-energy but low-current electron beams. In contrast, the results in the high (exponential)-gain regime are usually described in terms of a dispersion equation and are appropriate to free-electron laser amplifiers and SASE driven by intense relativistic electron beams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.P. Sukhatme, P.A. Wolff, Stimulated Compton scattering as a radiation source – theoretical limitations. J. Appl. Phys. 44, 2331 (1973)

    Article  Google Scholar 

  2. T.J.T. Kwan, J.M. Dawson, A.T. Lin, Free-electron laser. Phys. Fluids 20, 581 (1977)

    Article  Google Scholar 

  3. N.M. Kroll, W.A. McMullin, Stimulated emission from relativistic electrons passing through a spatially periodic transverse magnetic field. Phys. Rev. A 17, 300 (1978)

    Article  Google Scholar 

  4. J.M.J. Madey, Relationship between mean radiated energy, mean squared radiated energy and spontaneous power spectrum in a power series expansion of the equations of motion in a free-electron laser. Nuovo Cimento 50B, 64 (1979)

    Article  Google Scholar 

  5. T.J.T. Kwan, J.M. Dawson, Investigation of the free-electron laser with a guide magnetic field. Phys. Fluids 22, 1089 (1979)

    Article  Google Scholar 

  6. I.B. Bernstein, J.L. Hirshfield, Amplification on a relativistic electron beam in a spatially periodic transverse magnetic field. Phys. Rev. A 20, 1661 (1979)

    Article  Google Scholar 

  7. P. Sprangle, R.A. Smith, V.L. Granatstein, Free-electron lasers and stimulated scattering from relativistic electron beams, in Infrared and Millimeter Waves, vol. 1, ed. by K. J. Button, (Academic, New York, 1979), p. 279

    Chapter  Google Scholar 

  8. L. Friedland, J.L. Hirshfield, Free-electron laser with a strong axial magnetic field. Phys. Rev. Lett. 44, 1456 (1980)

    Article  Google Scholar 

  9. H.P. Freund, P. Sprangle, D. Dillenburg, E.H. da Jornada, B. Liberman, R.S. Schneider, Coherent and incoherent radiation from free-electron lasers with an axial guide field. Phys. Rev. A 24, 1965 (1981)

    Article  Google Scholar 

  10. B. Bernstein, L. Friedland, Theory of free-electron laser in combined helical pump and axial guide magnetic fields. Phys. Rev. A 23, 816 (1981)

    Article  Google Scholar 

  11. A. Gover, P. Sprangle, A generalized formulation of free-electron lasers in the low-gain regime including transverse velocity spread and wiggler incoherence. J. Appl. Phys. 52, 599 (1981)

    Article  Google Scholar 

  12. S.T. Stenholm, A. Bambini, Single-particle theory of the free-electron laser in a moving frame. IEEE J. Quantum Electron. QE-17, 1363 (1981)

    Article  Google Scholar 

  13. C.C. Shih, A. Yariv, Inclusion of space-chsrge effects with Maxwell's equations in the single-particle analysis of free-electron lasers. IEEE J. Quantum Electron. QE-17, 1387 (1981)

    Article  Google Scholar 

  14. R. Coisson, Energy loss calculation of gain in a plane sinusoidal free-electron laser. IEEE J. Quantum Electron. QE-17, 1409 (1981)

    Article  Google Scholar 

  15. W.B. Colson, The nonlinear wave equation for higher harmonics in free-electron lasers. IEEE J. Quantum Electron. QE-17, 1417 (1981)

    Article  Google Scholar 

  16. N.M. Kroll, P.L. Morton, M.N. Rosenbluth, Free-electron lasers with variable parameter wigglers. IEEE J. Quantum Electron. QE-17, 1436 (1981)

    Article  Google Scholar 

  17. H.S. Uhm, R.C. Davidson, Free-electron laser instability for a relativistic annular electron beam in a helical wiggler field. Phys. Fluids 24, 2348 (1981)

    Article  Google Scholar 

  18. H.P. Freund, P. Sprangle, D. Dillenburg, E.H. da Jornada, R.S. Schneider, B. Liberman, Collective effects on the operation of free-electron lasers with an axial guide field. Phys. Rev. A 26, 2004 (1982)

    Article  Google Scholar 

  19. J.A. Davies, R.C. Davidson, G.L. Johnston, Compton and Raman free-electron laser stability properties for a cold electron beam propagating through a helical magnetic field. Aust. J. Plant Physiol. 33, 387 (1985)

    Google Scholar 

  20. L.K. Grover, R.H. Pantell, Simplified analysis of free-electron lasers using Madey’s theorem. IEEE J. Quantum Electron. QE-21, 944 (1985)

    Article  Google Scholar 

  21. L.F. Ibanez, S. Johnston, Finite-temperature effects in free-electron lasers. IEEE J. Quantum Electron. QE-19, 339 (1983)

    Article  Google Scholar 

  22. E. Jerby, A. Gover, Investigation of the gain regimes and gain parameters of the free-electron laser dispersion equation. IEEE J. Quantum Electron. QE-21, 1041 (1985)

    Article  Google Scholar 

  23. H.P. Freund, R.C. Davidson, D.A. Kirkpatrick, Thermal effects on the linear gain in free-electron lasers. IEEE J. Quantum Electron. 27, 2550 (1991)

    Article  Google Scholar 

  24. L. Friedland, A. Fruchtman, Amplification on relativistic electron beams in combined helical and axial magnetic fields. Phys. Rev. A 25, 2693 (1982)

    Article  Google Scholar 

  25. H.S. Uhm, R.C. Davidson, Helically distorted relativistic beam equilibria for free-electron laser applications. J. Appl. Phys. 53, 2910 (1982)

    Article  Google Scholar 

  26. W.A. McMullin, R.C. Davidson, Low-gain free-electron laser near cyclotron resonance. Phys. Rev. A 25, 3130 (1982)

    Article  Google Scholar 

  27. H.S. Uhm, R.C. Davidson, Free-electron laser instability for a relativistic solid electron beam in a helical wiggler field. Phys. Fluids 26, 288 (1983)

    Article  Google Scholar 

  28. H.P. Freund, P. Sprangle, Unstable electrostatic beam modes in free-electron laser systems. Phys. Rev. A 28, 1835 (1983)

    Article  Google Scholar 

  29. C. Grebogi, H.S. Uhm, Vlasov susceptibility of relativistic magnetized plasma and application to free-electron lasers. Phys. Fluids 29, 1748 (1986)

    Article  Google Scholar 

  30. N.S. Ginzburg, Diamagnetic and paramagnetic effects in free-electron lasers. IEEE Trans. Plasma Sci. PS-15, 411 (1987)

    Article  Google Scholar 

  31. H.P. Freund, R.C. Davidson, G.L. Johnston, Linear theory of the collective Raman interaction in a free-electron laser with a planar wiggler and an axial guide field. Phys. Fluids B 2, 427 (1990)

    Article  Google Scholar 

  32. J.R. Cary, T.J.T. Kwan, Theory of off-axis mode production by free-electron lasers. Phys. Fluids 24, 729 (1981)

    Article  Google Scholar 

  33. T.J.T. Kwan, J.R. Cary, Absolute and convective instabilities in two-dimensional free-electron lasers. Phys. Fluids 24, 899 (1981)

    Article  Google Scholar 

  34. H.P. Freund, S. Johnston, P. Sprangle, Three-dimensional theory of free-electron lasers with an axial guide field. IEEE J. Quantum Electron. QE-19, 322 (1983)

    Article  Google Scholar 

  35. H.P. Freund, A.K. Ganguly, Three-dimensional theory of the free-electron laser in the collective regime. Phys. Rev. A 28, 3438 (1983)

    Article  Google Scholar 

  36. P. Luchini, S. Solimeno, Gain and mode-coupling in a three-dimensional free-electron laser: a generalization of Madey's theorem. IEEE J. Quantum Electron. QE-21, 952 (1985)

    Article  Google Scholar 

  37. M.N. Rosenbluth, Two-dimensional effects in free-electron lasers. IEEE J. Quantum Electron. QE-21, 966 (1985)

    Article  Google Scholar 

  38. B.Z. Steinberg, A. Gover, S. Ruschin, Three-dimensional theory of free-electron lasers in the collective regime. Phys. Rev. A 36, 147 (1987)

    Article  Google Scholar 

  39. C.J. Elliot, M.J. Schmitt, Small-signal gain for a planar free-electron laser with a period magnetic field. IEEE Trans. Plasma Sci. PS-15, 319 (1987)

    Article  Google Scholar 

  40. A. Fruchtman, High-density thick beam free-electron laser. Phys. Rev. A 37, 4259 (1988)

    Article  Google Scholar 

  41. T.M. Antonsen, P.E. Latham, Linear theory of a sheet beam free-electron laser. Phys. Fluids 31, 3379 (1988)

    Article  Google Scholar 

  42. V.K. Tripathi, C.S. Liu, A slow wave free-electron laser. IEEE. Trans. Plasma Sci. PS-17, 583 (1989)

    Article  Google Scholar 

  43. A. Fruchtman, H. Weitzner, Raman free-electron laser with transverse density gradients. Phys. Rev. A 39, 658 (1989)

    Article  Google Scholar 

  44. L.H. Yu, S. Krinsky, R.L. Gluckstern, Calculation of universal scaling function for free-electron laser gain. Phys. Rev. Lett. 64, 3011 (1990)

    Article  Google Scholar 

  45. Y.H. Chin, K.-J. Kim, M. Xie, Three-dimensional theory of the small-signal, high-gain free-electron laser including betatron oscillations. Phys. Rev. A 46, 6662 (1992)

    Article  Google Scholar 

  46. Y.H. Chin, K.-J. Kim, M. Xie, Three-dimensional free-electron laser dispersion relation including betatron oscillations. Nucl. Instr. Meth. A318, 481 (1992)

    Article  Google Scholar 

  47. J.R. Pierce, Traveling Wave Tubes (Van Nostrand, New York, 1950)

    Google Scholar 

  48. J. Masud, T.C. Marshall, S.P. Schlesinger, F.G. Yee, W.M. Fawley, E.T. Scharlemann, S.S. Yu, A.M. Sessler, E.J. Sternbach, Sideband control in a millimeter-wave free-electron laser. Phys. Rev. Lett. 58, 763 (1987)

    Article  Google Scholar 

  49. J. Fajans, G. Bekefi, Measurements of amplification and phase shift in a free-electron laser. Phys. Fluids 29, 3461 (1986)

    Article  Google Scholar 

  50. M. Xie, Design optimization for an x-ray free electron laser driven by the SLAC linac, in Proc. IEEE 1995 Particle Accelerator Conference, vol. 183, IEEE Cat. No. 95CH35843 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freund, H.P., Antonsen, T.M. (2018). Coherent Emission: Linear Theory. In: Principles of Free Electron Lasers . Springer, Cham. https://doi.org/10.1007/978-3-319-75106-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75106-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75105-4

  • Online ISBN: 978-3-319-75106-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics