Skip to main content

X-Ray Free-Electron Lasers and Self-Amplified Spontaneous Emission (SASE)

  • Chapter
  • First Online:
  • 1096 Accesses

Abstract

In this chapter, we consider X-ray free-electron lasers and self-amplified spontaneous radiation (SASE). Because there are no suitable seed lasers at these wavelengths and because the development of X-ray optics has not reached a point which makes oscillator configurations robust, the development of X-ray free-electron lasers has relied on SASE where shot noise on the electron beam grows to saturation in a single pass through a long undulator. Because this requires extremely high peak currents in order to enhance the exponential gain, extreme bunch compression is required prior to the injection of the electron beam into the wiggler. Also, since long wigglers are needed, the wiggler line is composed of multiple wiggler segments separated by quadrupoles to provide for strong focusing of the electron beam. In this chapter, we discuss the equivalent noise power for the start-up of SASE, magnetic chicanes for bunch compression, focusing/defocusing (FODO) lattices, simulation of shot noise, comparison between SASE and master oscillator power amplifiers (MOPAs), phase matching between wiggler segments, and phase shifters, and we give comparisons between the simulation procedures discussed in Chap. 6 with SASE experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V.L. Granatstein, S.P. Schlesinger, M. Herndon, R.K. Parker, J.A. Pasour, Production of megawatt submillimeter pulses by stimulated magneto-Raman scattering. Appl. Phys. Lett. 30, 384 (1977)

    Article  Google Scholar 

  2. D.B. McDermott, T.C. Marshall, S.P. Schlesinger, R.K. Parker, V.L. Granatstein, High-power free-electron laser based on stimulated Raman backscattering. Phys. Rev. Lett. 41, 1368 (1978)

    Article  Google Scholar 

  3. R.K. Parker, R.H. Jackson, S.H. Gold, H.P. Freund, V.L. Granatstein, P.C. Efthimion, M. Herndon, A.K. Kinkead, Axial magnetic field effects in a collective-interaction free-electron laser at millimeter wavelengths. Phys. Rev. Lett. 48, 238 (1982)

    Article  Google Scholar 

  4. R.H. Jackson, S.H. Gold, R.K. Parker, H.P. Freund, P.C. Efthimion, V.L. Granatstein, M. Herndon, A.K. Kinkead, J.E. Kosakowski, T.J.T. Kwan, Design and operation of a collective millimeter-wave free-electron laser. IEEE J. Quantum Electron. QE-19, 346 (1983)

    Article  Google Scholar 

  5. S.H. Gold, W.M. Black, H.P. Freund, V.L. Granatstein, R.H. Jackson, P.C. Efthimion, A.K. Kinkead, Study of gain, bandwidth, and tunability of a millimeter-wave free-electron laser operating in the collective regime. Phys. Fluids 26, 2683 (1983)

    Article  Google Scholar 

  6. S.H. Gold, W.M. Black, H.P. Freund, V.L. Granatstein, A.K. Kinkead, Radiation growth in a millimeter-wave free-electron laser operating in the collective regime. Phys. Fluids 27, 746 (1984)

    Article  Google Scholar 

  7. J.A. Pasour, R.F. Lucey, C.A. Kapetanakos, Long-pulse, high-power free-electron laser with no external beam focusing. Phys. Rev. Lett. 53, 1728 (1984)

    Article  Google Scholar 

  8. S.H. Gold, D.L. Hardesty, A.K. Kinkead, L.R. Barnett, V.L. Granatstein, High-gain 35 GHz free-electron laser amplifier experiment. Phys. Rev. Lett. 52, 1218 (1984)

    Article  Google Scholar 

  9. J.A. Pasour, R.F. Lucey, and C.W. Roberson, Long pulse free-electron laser driven by a linear induction accelerator, in Free-Electron Generators of Coherent Radiation, ed. by C.A. Brau, S.F. Jacobs, M.O. Scully, Proc. SPIE 453 (1984), p. 328

    Google Scholar 

  10. J.A. Pasour, S.H. Gold, Free-electron laser experiments with and without a guide magnetic field: a review of the millimeter-wave free-electron laser research at the Naval Research Laboratory. IEEE J. Quantum Electron. QE-21, 845 (1985)

    Article  Google Scholar 

  11. S.H. Gold, A.K. Ganguly, H.P. Freund, A.W. Fliflet, V.L. Granatstein, D.L. Hardesty, A.K. Kinkead, Parametric behavior of a high-gain 35 GHz free-electron laser amplifier with guide magnetic field. Nucl. Instr. Meth. A250, 366 (1986)

    Article  Google Scholar 

  12. J. Mathew, J.A. Pasour, High-gain, long-pulse free-electron laser oscillator. Phys. Rev. Lett. 56, 1805 (1986)

    Article  Google Scholar 

  13. J.A. Pasour, J. Mathew, C. Kapetanakos, Recent results from the Naval Research Laboratory experimental free-electron laser program. Nucl. Instr. Meth. A259, 94 (1987)

    Article  Google Scholar 

  14. D.S. Birkett, T.C. Marshall, S.P. Schlesinger, D.B. McDermott, A submillimeter free-electron laser experiment. IEEE J. Quantum Electron. QE-17, 1348 (1981)

    Article  Google Scholar 

  15. J. Masud, T.C. Marshall, S.P. Schlesinger, F.G. Yee, Gain measurements from start-up and spectrum of a Raman free-electron laser oscillator. Phys. Rev. Lett. 56, 1567 (1986)

    Article  Google Scholar 

  16. J. Masud, T.C. Marshall, S.P. Schlesinger, F.G. Yee, W.M. Fawley, E.T. Scharlemann, S.S. Yu, A.M. Sessler, E.J. Sternbach, Sideband control in a millimeter-wave free-electron laser. Phys. Rev. Lett. 58, 763 (1987)

    Article  Google Scholar 

  17. J. Masud, T.C. Marshall, S.P. Schlesinger, F.G. Yee, Regenerative gain in a Raman free-electron laser oscillator. IEEE J. Quantum Electron. QE-23, 1594 (1987)

    Article  Google Scholar 

  18. F.G. Yee, J. Masud, T.C. Marshall, S.P. Schlesinger, Power and sideband studies of a Raman free-electron laser. Nucl. Instr. Meth. A259, 104 (1987)

    Article  Google Scholar 

  19. F.G. Yee, T.C. Marshall, S.P. Schlesinger, Efficiency and sideband observations of a Raman free-electron laser oscillator with a tapered undulator. IEEE Trans. Plasma Sci. PS-16, 162 (1988)

    Article  Google Scholar 

  20. S.Y. Cai, S.P. Chang, J.W. Dodd, T.C. Marshall, H. Tang, Optical guiding in a Raman free-electron laser: computation and experiment. Nucl. Instr. Meth. A272, 136 (1988)

    Article  Google Scholar 

  21. J.W. Dodd, T.C. Marshall, Spiking radiation in the Columbia free-electron laser. Nucl. Instr. Meth. A296, 4 (1990)

    Article  Google Scholar 

  22. J. Fajans, G. Bekefi, Y.Z. Yin, B. Lax, Spectral measurements from a tunable, Raman free-electron laser. Phys. Rev. Lett. 53, 246 (1984)

    Article  Google Scholar 

  23. J. Fajans, G. Bekefi, Y.Z. Yin, B. Lax, Microwave studies of a tunable free-electron laser in combined axial and wiggler magnetic fields. Phys. Fluids 28, 1995 (1985)

    Article  Google Scholar 

  24. D.A. Kirkpatrick, G. Bekefi, A.C. DiRienzo, H.P. Freund, A.K. Ganguly, A millimeter and submillimeter wavelength free-electron laser. Phys. Fluids B1, 1511 (1989)

    Article  Google Scholar 

  25. D.C. Nguyen, R.L. Sheffield, C.M. Fortgang, J.C. Goldstein, J.M. Kinross-Wright, N.A. Ebrahim, Self-amplified spontaneous emission driven by a high-brightness electron beam. Phys. Rev. Lett. 81, 810 (1998)

    Article  Google Scholar 

  26. S.V. Milton et al., Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser. Science 292, 2037 (2001)

    Article  Google Scholar 

  27. P. Frigola et al., Initial gain measurements of an 800 nm SASE FEL, VISA. Nucl. Instrum. Meth. A475, 339 (2001)

    Article  Google Scholar 

  28. V. Ayvazyan et al., First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. 37, 297 (2006)

    Google Scholar 

  29. P. Emma et al., First lasing and operation of an Ångstrom-wavelength free-electron laser. Nature Phot. 4, 641 (2009)

    Article  Google Scholar 

  30. L. Giannessi et al., Self-amplified spontaneous emission for a single pass free-electron laser. Phys. Rev. ST-AB 14, 060712 (2011)

    Google Scholar 

  31. T. Tanaka, S. Goto, T. Hara, T. Hatsui, H. Ohashi, K. Togawa, M. Yabashi, H. Tanaka, Undulator commissioning by characterization of radiation in x-ray free-electron lasers. Phys. Rev. ST-AB 15, 110701 (2012)

    Google Scholar 

  32. J.-H. Han et al., Status of the PAL-XFEL project, in Proceedings of the 2012 International Particle Accelerator Conference (New Orleans, 2012)

    Google Scholar 

  33. E. Garwin, F. Meier, T. Pierce, K. Sattler, H.-C. Siegmann, A pulsed source of spin-polarized electrons by photoemission from EuO. Nucl. Instrum. Meth. 120, 483 (1974)

    Article  Google Scholar 

  34. D.T. Pierce, F. Meier, Photoemission of spin-polarized electrons from GaS. Phys. Rev. B 13, 5484 (1976)

    Article  Google Scholar 

  35. C.K. Sinclair, R.H. Miller, A high current, short pulse, rf synchronized electron gun for the Stanford linear accelerator. IEEE Trans. Nucl. Sci. NS-28, 2649 (1981)

    Article  Google Scholar 

  36. R.L. Sheffield, E.R. Gray, J.S. Fraser, The Los Alamos photoinjector program. Nucl. Instrum. Meth. A272, 222 (1988)

    Article  Google Scholar 

  37. M. Xie, Design optimization for an x-ray free electron laser driven by the SLAC linac, Proc. IEEE 1995 Particle Accelerator Conference, Vol. 183, IEEE Cat. No. 95CH35843 (1995)

    Google Scholar 

  38. K.-J. Kim, M. Xie, Self-amplified spontaneous emission for short wavelength coherent radiation. Nucl. Instrum. Meth. A331, 359 (1993)

    Article  Google Scholar 

  39. H.P. Freund, W.H. Miner Jr., Efficiency enhancement in seeded and self-amplified spontaneous emission free-electron lasers by means of a tapered wiggler. J. Appl. Phys. 105, 113106 (2009)

    Article  Google Scholar 

  40. S. Krinsky, On the definition of the number of temporal modes in the SASE output, in Proceedings of the 27th International Conference on Free-Electron Lasers, (www.JACoW.org, 2005), p. 94

  41. H.P. Freund, Phase-matching segmented wigglers in free-electron lasers. Phys. Rev. E 70, 015501(R) (2004)

    Article  Google Scholar 

  42. N.A. Vinokurov, Multisegment wigglers for short wavelength FEL. Nucl. Instr. Meth. A375, 264 (1996)

    Article  Google Scholar 

  43. H.P. Freund, P.J.M. van der Slot, D.L.A.G. Grimminck, I.D. Steya, P. Falgari, Three-dimensional, time-dependent simulation of free-electron lasers with planar, helical, and elliptical undulators. New J. Phys. 19, 023020 (2017)

    Article  Google Scholar 

  44. D. Ratner et al., FEL gain length and taper measurements at LCLS, SLAC-PUB-14194 (2010)

    Google Scholar 

  45. B.W.J. McNeil, G.R.M. Robb, M.W. Poole, N.R. Thompson, Harmonic lasing in a free-electron laser amplifier. Phys. Rev. Lett. 96, 084801 (2006)

    Article  Google Scholar 

  46. E.A. Schneidmiller, M. Yurkov, Harmonic lasing in x-ray free-electron lasers. Phys. Rev. ST-AB 15, 080702 (2012)

    Google Scholar 

  47. H.P. Freund, N.A. Yampolsky, Q. Marksteiner, Enhanced harmonic generation in x-ray free-electron lasers. Phys. Rev. ST-AB 17, 010702 (2014)

    Google Scholar 

  48. K.L.F Bane, M. Sands, The short-range resistive wall wakefields, SLAC-PUB-95-7074 (1995)

    Google Scholar 

  49. K.L.F. Bane, G. Stupakov, Resistive wall wakefield in the LCLS undulator beam pipe, SLAC-PUB-10707, (2004)

    Google Scholar 

  50. S.S. Baturin, A.D. Kanareykin, New method of calculating the wakefields of a point charge in a 51. K.L.F. Bane and G. Stupakov, Roughness tolerances in the undulator vacuum chamber of LCLS-II, in the Proceedings of the LINAC2014 Conference, Geneva, Switzerland, (2014), p. 708

    Google Scholar 

  51. A.W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (Wiley, New York, 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freund, H.P., Antonsen, T.M. (2018). X-Ray Free-Electron Lasers and Self-Amplified Spontaneous Emission (SASE). In: Principles of Free Electron Lasers . Springer, Cham. https://doi.org/10.1007/978-3-319-75106-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75106-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75105-4

  • Online ISBN: 978-3-319-75106-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics