Biotechnology and Apogamy in Dryopteris affinis spp. affinis: The Influence of Tissue Homogenization, Auxins, Cytokinins, Gibberellic Acid, and Polyamines

  • Alejandro Rivera
  • Paula Conde
  • Ma Jesús Cañal
  • Helena Fernández


Apomixis in ferns combines apogamy (the formation of sporophytes from somatic cells of prothallium) and agamospermy (the formation of unreduced diplo spores). This chapter evaluates the effects of phytohormones and their inhibitors on cellular regeneration, vegetative development, and apogamy in the gametophyte of the fern Dryopteris affinis spp. affinis. For this purpose, two type of explants—spores and homogenized gametophytes—were cultured in presence of the following compounds and concentrations: (a) spores: indole-3-butyric acid (IBA; 0.5–5–25 μM), gibberellic acid (GA3; 0.3–3 and 15 μM), 6-benzyladenine (BA; 0.4–4.4–22 μM), 2,3,5-triiodobenzoic acid (TIBA; 0.2–2–10 μM), flurprimidol (F; 0.3–3–15 μM), and cyclohexylamine (CHA; 0.06–0.6–5.6–55.5 μM); (b) homogenized gametophytes: IBA 0.5 μM + BA 4.4 μM; IBA 0.5 μM + BA 0.4 μM; IBA 5 μM + BA 0.4 μM; naphthalenacetic acid (NAA) 0.5 μM + BA 4.4 μM; NAA 2.7 μM + BA 2.2 μM; NAA 5.3 + BA μM 0.4; GA3 1.5 and 3 μM; TIBA 1 and 2 μM; and CHA 2.8 and 5.6 μM. Our results revealed that homogenate cultures from gametophytic tissue may be a good experimental system for manipulating the apogamy event. Apogamy may be accelerated in the regenerated gametophytes of D. affinis spp. affinis by cellular disruption or the addition of NAA/BA, GA3, or the spermidine synthase inhibitor CHA to the medium in a certain combination. Moreover, developing embryos were found to take a spatula shape before the meristematic area and lobulated wings are defined, which is typical of a heart-shaped gametophyte.


Apogamy Cellular regeneration Dryopteris affinis spp. affinis Fern Gametophyte 









Gibberellic acid


Indole-3-butyric acid


Murashige and Skoog mineral medium (1962)


2,3,5-triiodobenzoic acid


  1. von Aderkas P (1984) Promotion of Apogamy in Matteuccia struthiopteris, the Ostrich Fern. Am Fern J 74(1):1–6CrossRefGoogle Scholar
  2. Amaki W, Higuchi H (1991) A possible propagation system of Nephrolepis, Asplenium, Pteris, Adiantum and Rumora through tissue culture. Acta Hortic 300:237–243Google Scholar
  3. Barcaccia G, Albertini E (2013) Apomixis in plant reproduction: a novel perspective on an old dilemma. Plant Reprod 26:159–179. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beck MJ, Caponetti JD (1983) The effects of kinetin and naphthalenacetic acid in vitro shoot multiplication and rooting in the fishtail fern. Am J Bot 70:1–7CrossRefGoogle Scholar
  5. Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125CrossRefGoogle Scholar
  6. Camloh M (2006) In vitro culture of the fern Platycerium bifurcatum as a tool for various physiological and developmental studies. In: Floriculture, ornamental and plant biotechnology advances and topical issues. Springer, New York, pp 163–170Google Scholar
  7. Cetin E, Yildirim C, Palavan Unsal N, Unal M (2000) Effect of spermine and cyclohexylamine on in vitro pollen germination and tube growth in Helianthus annuus. Can J Plant Sci 80:241–245CrossRefGoogle Scholar
  8. Cooke RC (1979) Homogenization as an aid in tissue cultura propagation of Platycerium and Davallia. HortSci 14:21–22Google Scholar
  9. Cordle AR, Irish EE, Cheng CL (2007) Apogamy induction in Ceratopteris richardii. Int J Plant Sci 168:361–369. CrossRefGoogle Scholar
  10. Cordle AR, Bui LT, Irish EE, Cheng CL (2010) Laboratory-induced apogamy and apospory in Ceratopteris Richardii. In: Fernández H, Kumar A, Revilla MA (eds) Working with ferns: issues and applications. Springer, New York/Dordretch-Heidelberg/London, pp 25–36Google Scholar
  11. Cordle AR, Irish EE, Cheng CL (2012) Gene expression associated with apogamy commitment in Ceratopteris richardii. Sex Plant Reprod 25:293–304CrossRefPubMedGoogle Scholar
  12. Deeb F, van der Weele CM, Wolniak SM (2010) Spermidine is a morphogenetic determinant for cell fate specification in the male gametophyte of the Water Fern Marsilea vestita. The Plant Cell Online 22:3678–3691. CrossRefGoogle Scholar
  13. De-la-Peña C, Galaz-Avalos RM, Loyola-Vargas VM (2008) Possible role of light and polyamines in the onset of somatic embryogenesis of Coffea canephora. Mol Biotechnol 39:215–224CrossRefPubMedGoogle Scholar
  14. Domżalska L, Kędracka-Krok S, Jankowska U, Grzyb M, Sobczak M, Rybczyński JJ, Mikuła A (2017) Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb. Plant Sci 258:61–76. CrossRefPubMedGoogle Scholar
  15. Dutra N, Silveira V, Gonçalves I, Ribeiro Gomes-Neto J, Façanha A, Steiner N, Santa-Catarina C (2013) Polyamines affect the cellular growth and structure of pro-embryogenic masses in Araucaria angustifolia embryogenic cultures through the modulation of proton pump activities and endogenous levels of polyamines. Physiol Plant 148(1):121–132CrossRefPubMedGoogle Scholar
  16. Eeckhout S, Leroux O, Willats WGT, Popper ZA, Viane RLL (2014) Comparative glycan profiling of Ceratopteris richardii C-Fern` gametophytes and sporophytes links cell-wall composition to functional specialization. Ann Bot 114:1295–1307CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ekrt L, Koutecký P (2016) Between sexual and apomictic: unexpectedly variable sporogenesis and production of viable polyhaploids in the pentaploid fern of the Dryopteris affinis agg. (Dryopteridaceae). Ann Bot 117:97–106. CrossRefPubMedGoogle Scholar
  18. Elmore HW, Whittier DP (1975a) The involvement of ethylene and sucrose in the inductive and developmental phases of apogamous bud formation in Pteridium gametophytes. Can J Bot 53:375–381CrossRefGoogle Scholar
  19. Elmore HW, Whittier DP (1975b) Ethylene and carbohydrate requirements for apogamous bud induction in Pteridium gametophytes. Can J Bot 52:2089–2096CrossRefGoogle Scholar
  20. Emigh VD, Farrar DR (1977) Gemmae: a role in sexual reproduction in the fern gnus Vittaria. Science 198:297–298CrossRefPubMedGoogle Scholar
  21. Fernández H, Revilla MA (2003) In vitro culture of ornamental ferns. Plant Cell Tissue Org Cult 73:1–13. CrossRefGoogle Scholar
  22. Fernández H, Bertrand AM, Sánchez-Tamés R (1993) In vitro regeneration of Asplenium nidus L. from gametophytic and sporophytic tissue. Sci Hortic 56:71–77CrossRefGoogle Scholar
  23. Fernández H, Bertrand AM, Sánchez-Tamés R (1996) Influence of tissue culture conditions on apogamy in Dryopteris affinis ssp. Affinis. Plant Cell Tissue Organ Cult 45(1):93–97CrossRefGoogle Scholar
  24. Fernández H, Bertrand A, Sánchez-Tamés R (1997) Plantlet regeneration in Asplenium nidus l. and Pteris ensiformis l. by homogenization of Ba treated rhizomes. Sci Hortic 68:243–247. CrossRefGoogle Scholar
  25. Fernández H, Bertrand AM, Sierra MI, Sánchez-Tamés R (1999) An apolar GA-like compound responsible for the antheridiogen activity in Blechnum spicant. Plant Growth Regul 28:143–144. CrossRefGoogle Scholar
  26. Finnie JF, Van Staden J (1987) Multiplication of the tree fern Cyathea degrei. HortSci 22:665Google Scholar
  27. Gastony GJ, Windham MD (1989) Species concepts in pteridophytes: the treatment and definition of agamosporous species. Amer Fern J 79:65–77CrossRefGoogle Scholar
  28. Germanà MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857CrossRefPubMedGoogle Scholar
  29. Grossmann J, Fernández H, Chaubey PM, Valdés AE, Gagliardini V, Cañal MJ, Russo G, Grossniklaus U (2017) Proteogenomic analysis greatly expands the identification of proteins related to reproduction in the Apogamous Fern Dryopteris affinis ssp. affinis. Front Plant Sci 8.
  30. Grossniklaus U, Nogler GA, van Dijk PJ (2001) How to avoid sex: the genetic control of developmental aspects. Plant Cell 13(7):1491–1497CrossRefPubMedPubMedCentralGoogle Scholar
  31. Harper K (1976) Asexual multiplication of Leptosporangiatae ferns through tissue culture. Dissertation, University of California.Google Scholar
  32. Hicks G, von Aderkas P (1986) A tissue culture of the ostrich fern Matteuccia struthiopteris L. Todaro. Plant Cell Tissue Organ Cult 5:199–204CrossRefGoogle Scholar
  33. Higuchi H, Amaki W (1989) Effects of 6-benzyladenine on the organogenesis of Asplenium nidus L. through in vitro propagation. Sci Hortic 37:351–359CrossRefGoogle Scholar
  34. Higuchi H, Amaki W, Suzuki S (1987) In vitro propagation of Nephrolepis cordifolia Prsel. Sci Hortic 32:105–113CrossRefGoogle Scholar
  35. Kandemi̇r N, Saygili I (2015) Apomixis: new horizons in plant breeding. Turk J Agric For 39(4):549–556. CrossRefGoogle Scholar
  36. Kato Y (1970) Physiological and morphogenetic studies of fern gametophytes and sporophytes in aseptic culture. XII. Sporophyte formation in the dark cultured gametophyte of Pteris vittata L. Bot Gaz 121:205–210Google Scholar
  37. Kawakami, S.M., Kawakami, S., Kondo, K., Kato, J, and Ito, M. 2003. Sporogenesis in haploid sporophytes ofOsmunda japonica (Osmundaceae). Int. J. Plant Sci. 164:527–534Google Scholar
  38. Kazmierczak A (2010) Gibberellic acid and ethylene control male sex determination and development of Anemia phyllititdis gametophytes. In: Fernández H, Kumar A, Revilla MA (eds) Working with ferns. Issues and applications. Springer, New York, pp 49–65Google Scholar
  39. Knauss JF (1976) A partial tissue culture method for pathogen-free propagation of selected ferns from spores. Proc Fla State Hort 89:363–365Google Scholar
  40. Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574CrossRefPubMedGoogle Scholar
  41. Lee K, Seo PJ (2014) The Arabidopsis E3 ubiquitin ligase HOS1 contributes to auxin biosynthesis in the control of hypocotyl elongation. Plant Growth Regul 76:157–165. CrossRefGoogle Scholar
  42. Liu HM, Dyer RJ, Guo ZY, Meng Z, Li JH, Schneider H (2012) The evolutionary dynamics of apomixis in ferns: a case study from Polystichoid ferns. J Bot 11:510478. Google Scholar
  43. Loescher WH, Alberch CN (1979) Development in vitro of Nephrolepsis exaltata cv. Bostoniennsis runner tissues. Physiol Plant 47:250–254CrossRefGoogle Scholar
  44. Lopez RA, Renzaglia KS (2014) Multiflagellated sperm cells of Ceratopteris richardii are bathed in arabinogalactan proteins throughout development. Am J Bot 101:2052–2061CrossRefPubMedGoogle Scholar
  45. Lovis JD (1977) Evolutionary patterns and processes in ferns. Adv Bot Res 4:229–415CrossRefGoogle Scholar
  46. Manton I (1950) Problems of cytology and evolution in the Pteridophyta. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  47. Mehra PN, Sulklyan DS (1969) In vitro studies on apogamy, apospory, and controlled differentiation of rhizome segments of the fern, Ampelopteris prolifera (Retz.) Copel. Bot J Linn Soc 62:431–443CrossRefGoogle Scholar
  48. Menéndez V, Revilla MA, Bernard P, Gotor V, Fernández H (2006b) Gibberellins and antheridiogen on sex in Blechnum spicant L. Plant Cell Rep 25(10):1104.
  49. Menéndez V, Villacorta NF, Revilla MA, Gotor V, Bernard P, Fernández H (2006a) Exogenous and endogenous growth regulators on apogamy in Dryopteris affinis (Lowe) Fraser-Jenkins sp. affinis. Plant Cell Rep 25:85–91.
  50. Menéndez V, Revilla MA, Fal MA, Fernández H (2009) The effect of cytokinins on growth and sexual organ development in the gametophyte of Blechnum spicant L. Plant Cell Tissue Org Cult 96:245–250. CrossRefGoogle Scholar
  51. Mikuła A, Pożoga M, Tomiczak K, Rybczyński JJ (2015) Somatic embryogenesis in ferns: a new experimental system. Plant Cell Rep 34:783–794CrossRefPubMedPubMedCentralGoogle Scholar
  52. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  53. Rademacher 2000. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Ann.Rev. Plant Physiol. and Mol. Biol. 51: 501–531Google Scholar
  54. Salmi ML, Bushart TJRS (2010) Cellular, molecular, and genetic changes during the development of Ceratopteris richardii gametophytes. In: Fernández AK H, Revilla MA (eds) Working with Ferns. Issues and applications. Springer, New York, pp 11–24Google Scholar
  55. Salmi ML, Bushart TJ, Stout SC, Roux SJ (2005) Profile and analysis of gene expression changes during early development in germinating spores of Ceratopteris richardii. Plant Physiol 138:1734–1745CrossRefPubMedPubMedCentralGoogle Scholar
  56. Salmi ML, Morris KE, Roux SJ, Porterfield DM (2007) Nitric oxide and cGMP signaling in calcium-dependent development of cell polarity in Ceratopteris richardii. Plant Physiol 144:94–104CrossRefPubMedPubMedCentralGoogle Scholar
  57. Salvo E (1990) Guía de helechos de la Península Ibérica y Baleares. Ediciones Pirámide S.A.Google Scholar
  58. Schmidt A, Schmid MW, Klostermeier UC, Qi E, Guthörl D, Saliler C, Waller M, Rosenstiel P, Grossniklaus U (2014) Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation. PLoS Genet 10:e1004476CrossRefPubMedPubMedCentralGoogle Scholar
  59. Schmidt A, Schmid MW, Grossniklaus U (2015) Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 142:229–241CrossRefPubMedGoogle Scholar
  60. Seguí-Simarro JM (2010) Androgenesis Revisited. Bot Rev 76:377–404CrossRefGoogle Scholar
  61. Somer M, Arbesú R, Menéndez V, Revilla MA, Fernández H (2010) Sporophyte induction studies in ferns in vitro. Euphytica 171:203–210.
  62. Suo J, Zhao Q, Zhang Z, Chen S, Cao J, Liu G, Wei X, Wang T, Yang C, Dai S (2015) Cytological and proteomic analyses of Osmunda cinnamomea germinating spores reveal characteristics of Fern spore germination and rhizoid tip growth. Mol Cell Proteomics 14:2510–2534CrossRefPubMedPubMedCentralGoogle Scholar
  63. Valledor L, Menéndez V, Canal MJ, Revilla A, Fernández H (2014) Proteomic approaches to sexual development mediated by antheridiogen in the fern Blechnum spicant L. Proteomics 14(17–18):1–11Google Scholar
  64. de Vries J, Fischer AM, Roettger M, Rommel S, Schluepmann H (2015) Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. New Phytol 209(2):705–720. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wada M (2007) The fern as a model system to study photomorphogenesis. J Plant Res 120:3–16CrossRefPubMedGoogle Scholar
  66. Wen CK, Smith R, Banks JA (1999) ANI1. A sex pheromone-induced gene in Ceratopteris gametophytes and its possible role in sex determination. Plant Cell 11:1307–1318PubMedPubMedCentralGoogle Scholar
  67. Whittier DP (1964) The influence of cultural conditions on the induction of apogamy in Pteridium gametophytes. Am J Bot 51:730–736CrossRefGoogle Scholar
  68. Whittier DP (1965) Obligate apogamy in Cheilantes tomentosa and C. alabamiensis. Bot Gaz 126:275–281CrossRefGoogle Scholar
  69. Whittier DP (1966) The influence of growth substances on the induction of apogamy in Pteridium gametophytes. Am J Bot 53:882–886CrossRefGoogle Scholar
  70. Whittier DP (1975) The influence of osmotic conditions on induced apogamy in Pteridium gametophytes. Phytomorphology 25:246–249Google Scholar
  71. Whittier DP, Steeves TA (1960) The induction of apogamy in the bracken fern. Can J Bot 38:925–930CrossRefGoogle Scholar
  72. Whittier DP, Steeves TA (1962) Further studies on induced apogamy in ferns. Can J Bot 40:1525–1531CrossRefGoogle Scholar
  73. Yang HY, Zhou C (1982) In vitro induction of haploid plants from unpollinated ovaries and ovules. Theor Appl Genet 63:97–104CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alejandro Rivera
    • 1
  • Paula Conde
    • 1
  • Ma Jesús Cañal
    • 1
  • Helena Fernández
    • 1
  1. 1.Area of Plant Physiology, Department of Organisms and Systems Biology (BOS)OviedoSpain

Personalised recommendations